A Radiation Hardened SONOS 1Mb EEPROM for Space Applications

Dennis Adams¹, Michael Fitzpatrick¹, Erica Folk¹, William Hand¹, Randall D. Lewis¹, Patrick Shea¹, Joseph Smith¹, Phillip Peyton¹, James Sheehy², Jeffrey Dame², Gary Grant², James Murray³, Marvin White⁴, Gan Wang⁴

¹ Northrop Grumman Corporation, Baltimore, MD
² Amtec Corporation, Huntsville, AL
³ Sandia National Labs, Albuquerque, NM
⁴ Lehigh University, Bethlehem, PA

March 20, 2008
Outline

- 1Mb EEPROM Overview
- SONOS stack endurance cycling
- Memory retention study
- Qualification testing results
- Summary
The NGC EEPROM Team

- **Northrop Grumman** (Baltimore, MD) – wafer fabrication; device screening & test; product sales

- **Amtec** (Huntsville, AL) – device radiation effects analysis & radiation test; program management

- **Sandia** (Albuquerque, NM) – EEPROM design

- **Lehigh University** (Bethlehem, PA) – SONOS “stack” analysis and characterization
Proven Rad Hard NVM Technology

<table>
<thead>
<tr>
<th>Part Number:</th>
<th>W28C64</th>
<th>W28C256</th>
<th>W28C0108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td>8k x 8</td>
<td>32k x 8</td>
<td>128k x 8</td>
</tr>
<tr>
<td>Process:</td>
<td>1.25µm CMOS/SONOS</td>
<td>1.25µm CMOS/SONOS</td>
<td>0.8µm CMOS/SONOS</td>
</tr>
<tr>
<td>Memory Cell:</td>
<td>4T</td>
<td>4T</td>
<td>2T</td>
</tr>
<tr>
<td>Die Size:</td>
<td>6.5mm x 6.5 mm</td>
<td>8mm x 10.2 mm</td>
<td>8.3mm x 10.6 mm</td>
</tr>
<tr>
<td>Write Voltage:</td>
<td>10V</td>
<td>10V</td>
<td>7.5V</td>
</tr>
<tr>
<td>Write Time:</td>
<td>10 msec per page</td>
<td>10 msec per page</td>
<td>100 msec per page</td>
</tr>
<tr>
<td>Read Access:</td>
<td>250 nsec</td>
<td>250 nsec</td>
<td>250 nsec</td>
</tr>
<tr>
<td>Retention:</td>
<td>10 years @ 1E4 cycles</td>
<td>10 years @ 1E4 cycles</td>
<td>10 years @ 1E4 cycles</td>
</tr>
<tr>
<td>Production:</td>
<td>2Q93</td>
<td>2Q00</td>
<td>2Q08</td>
</tr>
</tbody>
</table>
Commercial Compatibility

The inner 32 pins are JEDEC compatible with commercial parts such as the Renesas HN58C1001.
Rad Hard 1Mb EEPROM Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>128Kb x 8</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>+3.3 V (Vdd), -4.2 V (Vwr)</td>
</tr>
<tr>
<td>Program Time (page)</td>
<td>100 ms</td>
</tr>
<tr>
<td>Endurance</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>1E4 cycles (min)</td>
</tr>
<tr>
<td>Read</td>
<td>Infinite cycles</td>
</tr>
<tr>
<td>Read Access Time</td>
<td>250 ns</td>
</tr>
<tr>
<td>Retention</td>
<td>>10 yrs @ +125° C</td>
</tr>
<tr>
<td>Temperature</td>
<td>-55 to +125C</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td>1 mW</td>
</tr>
<tr>
<td>Read</td>
<td>60 mW</td>
</tr>
<tr>
<td>Write</td>
<td>40 mW</td>
</tr>
<tr>
<td>Radiation</td>
<td></td>
</tr>
<tr>
<td>Total Dose</td>
<td>300 krad(Si)</td>
</tr>
<tr>
<td>Prompt Dose Upset (logic)</td>
<td>>1E8 rad(Si)/s</td>
</tr>
<tr>
<td>Prompt Dose Upset (memory)</td>
<td>>1E12 rad(Si)/s</td>
</tr>
<tr>
<td>Prompt Dose Survivability</td>
<td>>1E12 rad(Si)/s</td>
</tr>
<tr>
<td>SEU (logic)</td>
<td>40 MeV-cm2/mg</td>
</tr>
<tr>
<td>SEU (memory)</td>
<td>>94 MeV-cm2/mg</td>
</tr>
<tr>
<td>Latch-up</td>
<td>None</td>
</tr>
</tbody>
</table>

- NGC 1Mb EEPROM has been successfully characterized in all radiation environments and has successfully passed life testing (1000 hour @ +150° C).
Summary of 1M EEPROM Radiation Test Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>TID [krad(Si)]</td>
<td>300</td>
<td>>500</td>
</tr>
<tr>
<td>Prompt Dose - Transient [rad(Si)/s]</td>
<td>>1E8</td>
<td>2.9E8
Data recovered in one read cycle (1600 nsec)</td>
</tr>
<tr>
<td>Prompt Dose – Memory [rad(Si)/s]</td>
<td>>1E12</td>
<td>>6E12</td>
</tr>
<tr>
<td>Prompt Dose – Survivability [rad(Si)/s]</td>
<td>>1E12</td>
<td>>6E12</td>
</tr>
<tr>
<td>SEU – Logic (MeV-cm2/mg)</td>
<td>40</td>
<td>>122
(Au, 45 degree Angle)</td>
</tr>
<tr>
<td>SEU – Memory (MeV-cm2/mg)</td>
<td>>94</td>
<td>>122
(Au, 45 degree Angle)</td>
</tr>
<tr>
<td>Latch-up</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
SONOS Stack Endurance Cycling

2004 Process:
NGC Lot # 64017-1 Array
1000 NSONOS 5.0 x 0.8μm Transistors

2007 process:
NSONOS 1000 x 5 um x 0.8 um Transistor Array
Package 65512-7-10

"Optimized Process" has minimal degradation after 10 million cycles
1Mb EEPROM Activation Energy Study

- 1M EEPROM parts (59) characterized @ +225/+250/+300°C for memory retention

- Parts programmed once at each temperature (+7.5 V / 25 msec, -7.5 V / 75 msec, topological checkerboard)

- Arrhenius equation calculations used to determine the 1M EEPROM retention activation energy
 - \[MTF = k e^{E_a/kT} \]
 - \(E_a = 1.68 \text{ eV} \) for NGC 1M EEPROM retention

- NGC uses an aggressive screen to guarantee >10 year memory retention on all EEPROM products (2 days @ +250°C – all die)
 - NSONOS transistor data taken at +250°C to quantify SONOS transistor level retention acceleration effects

- **Key finding** – Based on this data, NGC 1Mb EEPROM product will have >>100 year memory retention at +125°C
1Mb EEPROM Activation Energy Study

Arrhenius/Lognormal

- 125°C
- 225°C
- 250°C
- 300°C

Fail = 34 | Suspend = 25
Fail = 38 | Suspend = 8
Fail = 58 | Suspend = 0

CL: 95% 1-sided
Ea = 1.68 eV; sigma = 0.68

- 0.1% failures at 1.6E5 days (440 years)
- 0.1% failures at 9.3E4 days (250 years) at 95% LL confidence

Time (days)

Cumulative 1Mb EEPROM failures (%)
1Mb EEPROM Activation Energy Study

Arrhenius/Lognormal
- Median life
- Fail = 130 | Suspend = 33
- CL: 95% 1-sided
- $E_a = 1.68$; $\sigma = 0.68$

For 125°C operating temp:
- Median life = 3500 years
- 95% LL confidence
- Median life = 2100 years
SONOS Memory Retention Screen Acceleration Effects

SONOS transistor array - 1000 x 4 um x 0.8 um (7 parts)

2 days @ +250°C retention screen is equivalent to 2600 years @ +125°C

Lehigh University Data

+7.5 V / 25 msec

Time (s)

Threshold Voltage (V)

+250 C

+250 C

-7.5 V / 75 msec

1.73E3 sec

+125 C

10 years

+250 C

+125 C

2600 years @ +125°C

8E10 sec

Calculated $E_a = 1.86$ eV

Copyright 2007 Northrop Grumman Corporation
1Mb Qualification Testing Results

- **Life Test**
 - 10 device sample (1Mbit EEPROM)
 - 1000 hr burn-in at 150°C
 - All devices passed post 1,000 hr electrical testing
 - Tests were performed at 25°C, -55°C, and +125°C

- **Total Dose Radiation**
 - 6 device sample (1Mbit EEPROM)
 - 3 devices 300 Krad
 - 3 devices 1Mrad
 - All devices passed post radiation testing
Negligible change with 1000 hour @ 150° C life test or 1 Mrad(Si) total ionizing dose for NGC 1Mb EEPROM

Part specification = < 2 mA
Minimal change in NGC 1Mb EEPROM access time with life test and with 300 krad
Summary

- A 1Mb (128k x 8) SONOS EEPROM has completed qualification testing
- Recent process optimization has resulted in significant improvements in SONOS retention and endurance
- Extensive 1Mb activation energy characterization indicates >>100 year memory retention at +125° C
- Device has been fully characterized in all radiation environments
- Device has passed 1000 hour @ +150° C life tests; – no reliability issues seen with this part
- Engineering parts are available NOW; - Production parts available 2Q ‘08
Acknowledgements

We would like to thank the

U. S. Army Space and Missile Defense Command,

U. S. Air Force Space and Missile Systems Center,

NAVY Strategic Systems Program Office,

the Missile Defense Agency,

National Science Foundation and NASA GSFC

for their past and continued support of these programs.
“You can be sure if it’s

Northrop Grumman’s Rad-Hard EEPROM Technology

2Kb BORAM device programmed in December 1976

No dropped bits as of October 18, 2007 – 31 years of retention!!