A Device-Level Architecture for
FPGA Co-Processors in Embedded
Computing Platforms

Chris Conger, Andrew White, and Dr. David Bueno

Honeywell Inc., Space Electronic Systems

Honeywell

Introduction
Honeywell

 FPGAs widely used in payload processing platforms
- Hardware accelerators to software processors
- Pre-processor devices for sensors or other external inputs
* Inter-device interconnect and device-level architecture critical
for performance of overall system

- Bus-based interconnects restrict achievable speedup via sub-optimal data
throughput efficiency

- FPGA’s must provide data movement between multiple targets
+ On-chip internal processing memory
+ External storage memory
+ Off-chip interconnect interfaces

- Control mechanism for FPGAs from software also performance-critical

* Presenting architecture of experimental testbed, featuring:

- Xilinx Virtex-5 FPGAs, custom-designed architecture for efficient data
movement and control

- Freescale MPC8548 PowerPC software processors
- Serial RapidlO system-level interconnect

Prototype Overview (l)

Honeywell

<+— Serial RapidlO (2/8 Gbps)
4 S =4 arnet

Heterogeneous system of
processing elements
-One SW processor, two FPGAs
-Connected via Serial RapidlO

-SBC serves as master and
user interface, runs Linux

-FPGAs are slaves to SBC
(generic hardware co-procs)

— UART

MPC8548

: * Tundra
Powered by single ATX and development board
.ImpreSSIVe CapabllltleS * Freescale
_Each Rap|dlo ||nk Operates at 8 Advanced Mezzanine Card (AMC)
Gbps in each direction -
* Xilinx (x2),
-25.6 Gbps external memory XC5VLX110T-FF1136-1
throughput for FPGAs
-Transparent remote memory * Xilinx

access Serial PHY, I/O-Logica’l LOG

Prototype Overview (II)
Honeywell

* Testbed architecture and environment:

- PowerQUICC SBC serves as testbed “master” node (runs Linux),
FPGAs act as slaves w/ remotely-accessible memory

- Applications built in C with PowerPC cross-compiler,
extremely simple API to use RapidlO and FPGAs

- Majority of FPGA design (VHDL) can remain fixed, only
computational modules need to be changed for different apps

2 XILINX'

fre escale

semiconductor

FPGA Device Architecture

Honeywell
.High_performance « Xilinx Virtex-5 LX110T FPGA
computational resource - 128 MB external DDR2 SDRAM
-Majority of design » 128 MB CompactFlash card
prOVideS framework within ° 1x/4x Serial RapidlO link, 2.5 GHz
which one can develop » Internal clock freq.’s from 100-200 MHz
applications » All-hardware control fabric
-FPGA architecture does
not perform computation DDRZ Interface s SRIO Intorface
-Example co-processors ... — e *_b’f 5Ghps
‘FPGA HDL represents oo || == " [sbps || rapuro
majority of design effort “ ™ ||, ; cops F fabric
. . 128-bit i@ 200 MHz
-Evolving node design) -
-Leveraged previous work " 256 Gbes GLooK
*Highly-efficient design | | elo
MON

Focus on Components: On-Chip Memory Controller

Honeywell

STATE
MACHINE

$

SRAM D SRAM 1 L S
L]

* On-Chip Memory (OCM) Controller

RAM N

FIFO

FIFO

L
OCM Interface

- Muxes a single pair of FIFOs with numerous SRAM interfaces
- Commands received through command FIFO (read or write)

- Command responses sent through another FIFO after all data has been transferred

* Up to four (4) SRAM interfaces
- One reserved for Node Controller, so up to three (3) co-processors

- Responsible for moving data in/out of co-processors

128-hit
i

Focus on Components: DDR2 Memory Controller

Honeywell
| BORZ intarfaca]
—h
e Ford | ! '
=" =¥ controlier |-
' | i
Xilie's o ooRz ||EE !
ooRz |, i M |
]| Controller a1 controller __ |
.| Ptom | 1
ifrom MiG
| . Porl 1oy
"=-.____ :'._" Controller
= .
+ 128 MB DDR2 memory
: 6(4—bi;[%QQ&MHEB%R - External DDR2 memory controller
up to Z . .
. 128?bit, 200 MHz internal - Central component in FPGA design, all transfers to/from DDR2

- Xilinx-provided DDR2 memory controller at heart, wrapped with
custom multi-interface wrapper

* Provides dedicated control and data ports for each
internal component (2 data FIFOs, 2 control FIFOs)

- OCM controller, RapidlO interface (2 ports)
- Improves concurrency, although still ultimately serialized

* Port arbiter prevents starvation... simple round-robin

Focus on Components: SRIO Endpoint

Honeywell
=" - — . f
g I
| | TRESH
[X | ETH ‘
RApfil] e J M |
— oz I 4 = =
| Rapidid 1) o | i
L] Tabiic TREG |
T CTRL | ——
1
; - | W R B o
Fratproad
ol
S ot to
- - L. | mirawoa
"] P Corss Rapid 0
5 e | ki
EIED - = =
TCHDT L= B
FIFQ REG |
CTRL |
| E———

*RapidIO endpoint design (from Xilinx) wrapped to provide
simplified command interface

-RapidlO core provides four (4) independent ports to user
-Two pairs of two ports... port and port

*Target port (upper-half of figure) is independent of rest of local
control logic (provides transparency)

*Interface logic must be extremely efficient to not slow down
RapidlO link

Focus on Components: App-Specific Modules

Honeywell

*Application development for FPGA done in HDL
-Xilinx ISE software used for design synthesis and generation
-Majority of FPGA design should remain fixed

Ideally, user only needs to design co-processors
-See figure below, co-processors only small part of design
-Developer can focus on application-related computation
-Node controller allows control fabric and data path to remain fixed

*Proposed co-processor module “wrapper” standard

>
-
>

v SUGGESTED @ REQUIRED
— T —]
\ g .

\

\ DA — |
b — — ."I
ONE | | INPUT OUTPUT : h
LARGESRAM | | BUFFER | BUFFER | .
/ \
BRAM module | N
I ,
II N
/ \
II \\
¥ [4
{
data_i addr_i os_i we i 0 {
M
r

Y
Ay
y
N
N
|
\
\
M,

Engine Modulel."l

FPGA Architecture Control Fabric

Honeywell

*“Node Controller” is critical part of FPGA architecture

- Provides control over data movement throughout device, as well as
activity of computational modules, and other basic operations
- Behaves very similar to software processor

+ Much higher performance than PowerPC/Microblaze alternative

+* However, much simpler functionality = fewer features and capabilities, but also
less “overhead”

« Software processor sends instruction “streams” to
FPGA via RapidlO, FPGA executes instructions

- Examples of instructions include “move data from Ato B,” ©
amount of data,” “take timestamp,” etc...

- By sending “bundles” of instructions, individual network transactions
are not required for software processor to verify each instruction

- Loops, etc... permit continuous, self-contained operation of FPGA
without having to hard-code that particular behavior

process X

Performance Results — Serial RapidIO

Honeywell

*Basic throughput & latency results
- All basic I/0O-Logical transaction types
- All possible
-Varied transfer size from
*Latency defined from perspective of
initiating element (all data transferred at
Initiator)
Throughput defined by dividing latency
by time

Assumes sequential memory access

- FPGA-to-FPGA

- Best-case throughput on SWRITE
(7 Gbps, 93% of 7.52 Gbps max)

-“Hump” seen due to DDR2 memory
(hump occurs as xfer sizes cross rows)

*AMC-to-FPGA

- Disappointingly low throughput for AMC-
initiated RapidlO transactions

-Only SWRITE and NREAD shown, to
highlight the extremes

Throughput (Gbps)

o - N w » [¢)] ()] ~ ©
| I

FPGA to FPGA Transfer Throughput

.=

/‘ / —— NREAD N
—=— NWRITE_R|_|
/ / NWRITE
7 —— SWRITE ||
/ —*— SWRITE2 | |
/ / —o— NREAD2
_/
8T VBT EXES SR3%F3

Transfer Size (B)

Performance Results — FPGA Local Memory

Honeywell

Local data transfers

-Movement of data between DDR2
and on-chip BlockRAM

-Transfer sizes capped at 128 KB
-Two types: read and write

Transfer latencies defined as
time to move all data

-Best-case latency = ~500 ns
-Worst-case latency = ~44 us

-Performance difference for
smallest sizes due to read latency
of DDR2 controller

*Great throughput, up to
nearly 25 Gbps!!

1.E+05

1.E+04

Latency (ns)

4
m
o
w

1.E+02

FPGA Local Transfer Latency

—&— READ (fast)
——— WRITE (fast)

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K
Transfer Size (B)

N
o

-
o

Throughput (Gbps)
o

()]
!

o
|

FPGA Local Transfer Throughput

—a— READ (fast)

——— WRITE (fast) -/}'//.—//.;‘

P

Y%

32 64 128 25 512 1K 2K 4K 8K 16K 32K 64K 128K

Transfer Size (B)

Performance Results — FPGA Computation
Honeywell

‘Beyond data movement, what can the FPGA do?

- “Instruction rate”

+Defined as maximum rate at which instructions can be executed by
Node Controller
*Good estimation of average time in between instructions
*Measured by executing consecutive timestamp instructions

+Max instruction rate = 7 clock cycles, or 56 ns (125 MHz clock)
- lllustration of sustained computational performance:

+Processing 600x800 video frames, in 20 chunks

+Single frame: 480,000 B, 480 us =8 Gbps

+100 frames: 48,000,000 B, 1.431s =268 Mbps

Coarse-grained control critical for performance!!

Conclusions
Honeywell

* Presented architecture and performance of experimental
testbed

- FPGA architecture designed to maximize concurrency and efficiency
- Serial RapidlO provides much-improved inter-device data throughput

* Impressive sustained performance demonstrated
- ~6.5Gbps data throughput between FPGA devices

- Up to 25Gbps data throughput between internal and external memories
+ Can be sustained even with concurrent transmission of data over RapidlO link!

- Room for improvement and extension of control mechanism
- Support wider-range of instructions for FPGA

- Prototype designed with radar/image processing in mind, consider other
user applications (i.e. styles of computation modules)

* For more information contact us at:
- Chris Conger - chrisley.conger@honeywell.com
- Andrew White - andrew.t.white@honeywell.com
- David Bueno - david.bueno@honeywell.com

