A Device-Level Architecture for
FPGA Co-Processors in Embedded
Computing Platforms

Chris Conger, Andrew White, and Dr. David Bueno

Honeywell Inc., Space Electronic Systems

Honeywell



Introduction
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 FPGAs widely used in payload processing platforms
- Hardware accelerators to software processors
- Pre-processor devices for sensors or other external inputs
* Inter-device interconnect and device-level architecture critical
for performance of overall system

- Bus-based interconnects restrict achievable speedup via sub-optimal data
throughput efficiency

- FPGA’s must provide data movement between multiple targets
+ On-chip internal processing memory
+ External storage memory
+ Off-chip interconnect interfaces

- Control mechanism for FPGAs from software also performance-critical

* Presenting architecture of experimental testbed, featuring:

- Xilinx Virtex-5 FPGAs, custom-designed architecture for efficient data
movement and control

- Freescale MPC8548 PowerPC software processors
- Serial RapidlO system-level interconnect



Prototype Overview (l)
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Heterogeneous system of
processing elements
-One SW processor, two FPGAs
-Connected via Serial RapidlO

-SBC serves as master and
user interface, runs Linux

-FPGAs are slaves to SBC
(generic hardware co-procs)
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Prototype Overview (II)
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* Testbed architecture and environment:

- PowerQUICC SBC serves as testbed “master” node (runs Linux),
FPGAs act as slaves w/ remotely-accessible memory

- Applications built in C with PowerPC cross-compiler,
extremely simple API to use RapidlO and FPGAs

- Majority of FPGA design (VHDL) can remain fixed, only
computational modules need to be changed for different apps
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FPGA Device Architecture
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Focus on Components: On-Chip Memory Controller
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- Muxes a single pair of FIFOs with numerous SRAM interfaces
- Commands received through command FIFO (read or write)

- Command responses sent through another FIFO after all data has been transferred

* Up to four (4) SRAM interfaces
- One reserved for Node Controller, so up to three (3) co-processors

- Responsible for moving data in/out of co-processors
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Focus on Components: DDR2 Memory Controller
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- Xilinx-provided DDR2 memory controller at heart, wrapped with
custom multi-interface wrapper

* Provides dedicated control and data ports for each
internal component (2 data FIFOs, 2 control FIFOs)

- OCM controller, RapidlO interface (2 ports)
- Improves concurrency, although still ultimately serialized

* Port arbiter prevents starvation... simple round-robin



Focus on Components: SRIO Endpoint
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*RapidIO endpoint design (from Xilinx) wrapped to provide
simplified command interface

-RapidlO core provides four (4) independent ports to user
-Two pairs of two ports... port and port

*Target port (upper-half of figure) is independent of rest of local
control logic (provides transparency)

*Interface logic must be extremely efficient to not slow down
RapidlO link



Focus on Components: App-Specific Modules
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*Application development for FPGA done in HDL
-Xilinx ISE software used for design synthesis and generation
-Majority of FPGA design should remain fixed

Ideally, user only needs to design co-processors
-See figure below, co-processors only small part of design
-Developer can focus on application-related computation
-Node controller allows control fabric and data path to remain fixed

*Proposed co-processor module “wrapper” standard
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FPGA Architecture Control Fabric
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*“Node Controller” is critical part of FPGA architecture

- Provides control over data movement throughout device, as well as
activity of computational modules, and other basic operations
- Behaves very similar to software processor

+ Much higher performance than PowerPC/Microblaze alternative

+* However, much simpler functionality = fewer features and capabilities, but also
less “overhead”

« Software processor sends instruction “streams” to
FPGA via RapidlO, FPGA executes instructions

- Examples of instructions include “move data from Ato B,” ©
amount of data,” “take timestamp,” etc...

- By sending “bundles” of instructions, individual network transactions
are not required for software processor to verify each instruction

- Loops, etc... permit continuous, self-contained operation of FPGA
without having to hard-code that particular behavior

process X



Performance Results — Serial RapidIO
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*Basic throughput & latency results
- All basic I/0O-Logical transaction types
- All possible
-Varied transfer size from
*Latency defined from perspective of
initiating element (all data transferred at
Initiator)
Throughput defined by dividing latency
by time

Assumes sequential memory access

- FPGA-to-FPGA

- Best-case throughput on SWRITE
(7 Gbps, 93% of 7.52 Gbps max)

-“Hump” seen due to DDR2 memory
(hump occurs as xfer sizes cross rows)

*AMC-to-FPGA

- Disappointingly low throughput for AMC-
initiated RapidlO transactions

-Only SWRITE and NREAD shown, to
highlight the extremes
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Performance Results — FPGA Local Memory
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Local data transfers

-Movement of data between DDR2
and on-chip BlockRAM

-Transfer sizes capped at 128 KB
-Two types: read and write

Transfer latencies defined as
time to move all data

-Best-case latency = ~500 ns
-Worst-case latency = ~44 us

-Performance difference for
smallest sizes due to read latency
of DDR2 controller

*Great throughput, up to
nearly 25 Gbps!!
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Performance Results — FPGA Computation
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‘Beyond data movement, what can the FPGA do?

- “Instruction rate”

+Defined as maximum rate at which instructions can be executed by
Node Controller
*Good estimation of average time in between instructions
*Measured by executing consecutive timestamp instructions

+Max instruction rate = 7 clock cycles, or 56 ns (125 MHz clock)
- lllustration of sustained computational performance:

+Processing 600x800 video frames, in 20 chunks

+Single frame: 480,000 B, 480 us =8 Gbps

+100 frames: 48,000,000 B, 1.431s =268 Mbps

Coarse-grained control critical for performance!!




Conclusions
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* Presented architecture and performance of experimental
testbed

- FPGA architecture designed to maximize concurrency and efficiency
- Serial RapidlO provides much-improved inter-device data throughput

* Impressive sustained performance demonstrated
- ~6.5Gbps data throughput between FPGA devices

- Up to 25Gbps data throughput between internal and external memories
+ Can be sustained even with concurrent transmission of data over RapidlO link!

- Room for improvement and extension of control mechanism
- Support wider-range of instructions for FPGA

- Prototype designed with radar/image processing in mind, consider other
user applications (i.e. styles of computation modules)

* For more information contact us at:
- Chris Conger - chrisley.conger@honeywell.com
- Andrew White - andrew.t.white@honeywell.com
- David Bueno - david.bueno@honeywell.com




