

1 1

1

A Device-Level Architecture for
FPGA Co-Processors in Embedded

Computing Platforms

Chris Conger, Andrew White, and Dr. David Bueno

Honeywell Inc., Space Electronic Systems

Introduction

• FPGAs widely used in payload processing platforms
- Hardware accelerators to software processors
- Pre-processor devices for sensors or other external inputs

• Inter-device interconnect and device-level architecture critical
for performance of overall system
- Bus-based interconnects restrict achievable speedup via sub-optimal data

throughput efficiency
- FPGA’s must provide data movement between multiple targets

On-chip internal processing memory
External storage memory
Off-chip interconnect interfaces

- Control mechanism for FPGAs from software also performance-critical
• Presenting architecture of experimental testbed, featuring:

- Xilinx Virtex-5 FPGAs, custom-designed architecture for efficient data
movement and control

- Freescale MPC8548 PowerPC software processors
- Serial RapidIO system-level interconnect

Prototype Overview (I)

•Heterogeneous system of
processing elements

-One SW processor, two FPGAs
-Connected via Serial RapidIO
-SBC serves as master and
user interface, runs Linux

-FPGAs are slaves to SBC
(generic hardware co-procs)

•Powered by single ATX
•Impressive capabilities

-Each RapidIO link operates at 8
Gbps in each direction

-25.6 Gbps external memory
throughput for FPGAs

-Transparent remote memory
access

• Tundra Tsi578 Serial RapidIO 8/16-
port switch and development board

• Freescale PowerQUICC-III 8548
Advanced Mezzanine Card (AMC)

• Xilinx ML523 boards (x2),
XC5VLX110T-FF1136-1

• Xilinx RapidIO IP core,
Serial PHY, I/O-Logical LOG

Prototype Overview (II)

• Testbed architecture and environment:
- PowerQUICC SBC serves as testbed “master” node (runs Linux),

FPGAs act as slaves w/ remotely-accessible memory
- Applications built in C with PowerPC cross-compiler,

extremely simple API to use RapidIO and FPGAs
- Majority of FPGA design (VHDL) can remain fixed, only

computational modules need to be changed for different apps

FPGA Device Architecture

•High-performance
computational resource

•Majority of design
provides framework within
which one can develop
applications

-FPGA architecture does
not perform computation

-Example co-processors
•FPGA HDL represents
majority of design effort

-Evolving node design
-Leveraged previous work

•Highly-efficient design

• Xilinx Virtex-5 LX110T FPGA

• 128 MB external DDR2 SDRAM

• 128 MB CompactFlash card
• 1x/4x Serial RapidIO link, 2.5 GHz

• Internal clock freq.’s from 100-200 MHz

• All-hardware control fabric

Focus on Components: On-Chip Memory Controller

• On-Chip Memory (OCM) Controller
- Muxes a single pair of FIFOs with numerous SRAM interfaces
- Commands received through command FIFO (read or write)
- Command responses sent through another FIFO after all data has been transferred

• Up to four (4) SRAM interfaces
- One reserved for Node Controller, so up to three (3) co-processors
- Responsible for moving data in/out of co-processors

• Up to 128 KB/co-proc
• 128-bit, 200 MHz

internal (can be faster)

Focus on Components: DDR2 Memory Controller

• External DDR2 memory controller
- Central component in FPGA design, all transfers to/from DDR2
- Xilinx-provided DDR2 memory controller at heart, wrapped with

custom multi-interface wrapper
• Provides dedicated control and data ports for each

internal component (2 data FIFOs, 2 control FIFOs)
- OCM controller, RapidIO interface (2 ports)
- Improves concurrency, although still ultimately serialized

• Port arbiter prevents starvation… simple round-robin

• 128 MB DDR2 memory
• 64-bit @ 400 MHz DDR

(up to 666 MHz DDR)
• 128-bit, 200 MHz internal

Focus on Components: SRIO Endpoint

•RapidIO endpoint design (from Xilinx) wrapped to provide
simplified command interface

-RapidIO core provides four (4) independent ports to user
-Two pairs of two ports… initiator port and target port

•Target port (upper-half of figure) is independent of rest of local
control logic (provides transparency)

•Interface logic must be extremely efficient to not slow down
RapidIO link

• I/O-Logical interface
• 1-/4-bit @ 2.5 Gbps link
• 64-bit @ 125 MHz internal

Focus on Components: App-Specific Modules
•Application development for FPGA done in HDL

-Xilinx ISE software used for design synthesis and generation
-Majority of FPGA design should remain fixed

•Ideally, user only needs to design co-processors
-See figure below, co-processors only small part of design
-Developer can focus on application-related computation
-Node controller allows control fabric and data path to remain fixed

•Proposed co-processor module “wrapper” standard

FPGA Architecture Control Fabric

• “Node Controller” is critical part of FPGA architecture
- Provides control over data movement throughout device, as well as

activity of computational modules, and other basic operations
- Behaves very similar to software processor

Much higher performance than PowerPC/Microblaze alternative
However, much simpler functionality = fewer features and capabilities, but also
less “overhead”

• Software processor sends instruction “streams” to
FPGA via RapidIO, FPGA executes instructions
- Examples of instructions include “move data from A to B,” “process X

amount of data,” “take timestamp,” etc…
- By sending “bundles” of instructions, individual network transactions

are not required for software processor to verify each instruction
- Loops, etc… permit continuous, self-contained operation of FPGA

without having to hard-code that particular behavior

Performance Results – Serial RapidIO
• Basic throughput & latency results

-All basic I/O-Logical transaction types
-All possible source/destination combos
-Varied transfer size from 32 B to 16 MB

• Latency defined from perspective of
initiating element (all data transferred at
initiator)

• Throughput defined by dividing latency
by time

• Assumes sequential memory access

• FPGA-to-FPGA
-Best-case throughput on SWRITE
(7 Gbps, 93% of 7.52 Gbps max)

- “Hump” seen due to DDR2 memory
(hump occurs as xfer sizes cross rows)

• AMC-to-FPGA
-Disappointingly low throughput for AMC-
initiated RapidIO transactions

-Only SWRITE and NREAD shown, to
highlight the extremes

FPGA to FPGA Transfer Throughput

0

1

2

3

4

5

6

7

8

32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

Transfer Size (B)

Th
ro

ug
hp

ut
 (G

bp
s) NREAD

NWRITE_R
NWRITE
SWRITE
SWRITE2
NREAD2

FPGA TO FPGA
• NREAD - read operation
• NWRITE_R - write with response
• NWRITE - response-less write
• SWRITE - response-less write

AMC TO FPGA
• SWRITE2 - response-less write
• NREAD2 - read operation

Performance Results – FPGA Local Memory

•Local data transfers
-Movement of data between DDR2
and on-chip BlockRAM

-Transfer sizes capped at 128 KB
-Two types: read and write

•Transfer latencies defined as
time to move all data

-Best-case latency = ~500 ns
-Worst-case latency = ~44 μs
-Performance difference for
smallest sizes due to read latency
of DDR2 controller

•Great throughput, up to
nearly 25 Gbps!!

FPGA Local Transfer Latency

1.E+02

1.E+03

1.E+04

1.E+05

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

Transfer Size (B)

La
te

nc
y

(n
s)

READ (fast)

WRITE (fast)

FPGA Local Transfer Throughput

0

5

10

15

20

25

30

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

Transfer Size (B)

Th
ro

ug
hp

ut
 (G

bp
s)

READ (fast)

WRITE (fast)

Performance Results – FPGA Computation

Coarse-grained control critical for performance!!

Conclusions

• Presented architecture and performance of experimental
testbed
- FPGA architecture designed to maximize concurrency and efficiency
- Serial RapidIO provides much-improved inter-device data throughput

• Impressive sustained performance demonstrated
- ~6.5Gbps data throughput between FPGA devices
- Up to 25Gbps data throughput between internal and external memories

Can be sustained even with concurrent transmission of data over RapidIO link!

• Room for improvement and extension of control mechanism
- Support wider-range of instructions for FPGA
- Prototype designed with radar/image processing in mind, consider other

user applications (i.e. styles of computation modules)
• For more information contact us at:

- Chris Conger - chrisley.conger@honeywell.com
- Andrew White - andrew.t.white@honeywell.com
- David Bueno - david.bueno@honeywell.com

