

Using Fusion Mixed-signal FPGAs to Implement System Management in µTCA Applications

Mike Brogley Product Marketing Manager, System Applications and Ken O'Neill Director, High Reliability Product Marketing Actel Corporation

- TCA Hardware Platform Management Challenges
- Traditional Design using Discrete Devices
- Mixed-signal FPGA Advantages
- Design Examples
- Lessons Learned
- Conclusions
- Contact Information

TCA Hardware Platform Management Challenges

- Startup and Power Sequencing
- Power, Current, and Temperature Monitoring
- IPMI Communications
- Interoperability
- Thermal and Power Management
- Redundancy and Reliability
- Manufacturability

Traditional Solutions using Discrete Devices

Startup and Power Sequencing

- Limited configurability
- "All sizes fit one"

Power, Current and Temperature Monitoring

- Limited customization
- "All sizes fit one"

IPMI

- Multiple I2C devices
- Must be managed by external processor

Traditional Solutions using Discrete Devices, continued

Interoperability

- Designs required to "Play Well With Others"
- Firmware-centric solutions challenged in spec-driven critical timing requirements

Thermal and Power Impact

- High BOM counts
- Power budgets
- Chassis thermal loading

Traditional Solutions using Discrete Devices, continued

Redundancy and Reliability

- Every discrete part is a new single point of failure
- Manufacturability
 - High BOM count:
 - Increases board layout time
 - Increases required board layers
 - Increases routing complexity (thru-holes, vias)
 - Increases assembly expense
 - Increases BOM kitting challenges

Mixed-Signal FPGA Advantages

- Intrinsically Low Power
- Extensive Security Features
- Live at Power Up
- Reprogrammable
- Intrinsically Great Noise Immunity
- Voltage, Current and Temperature Monitoring
- FET Driver Outputs
- On-chip NVM
- Configurable Clocking Resources
 - Internal RC oscillator, Crystal Oscillator, CCC/PLL and Real Time Counter
- Embedded CPUs
 - CoreABC, 8051 and ARM Cortex-M1 processor
 - 8051
 - Cortex-M1

Fusion: Actel's Mixed Signal FPGA

MAPLD 2008

Actel

Actel FPGA

Integration Advantages of Mixed-Signal FPGAs

- BOM Integration
- Board Design Simplification
- Reduced Thermal Loading
- Reduced Points of Failure
- Increased Design Flexibility
- Reprogrammability
- Customizability

Mixed-Signal FPGA Design Approach

- Leverage Existing Pre-built IP and Minimize Full-custom Development
- Maximize Design Flexibility,
 - Taking advantage of FPGA reprogrammability
- Maximize Design Reuse,
 - Particularly for common elements in standards-driven designs
- Partner with Industry Leaders
- Design to Accommodate Real Customer Needs

Mixed-Signal FPGA Results

BOM Total Parts Count Reduction

- µTCA PM: 53% (from ~800 parts to ~370)
- ATCA IPMC core: 39%
- ATCA AMC Carrier w/8 AMC sites: 37%

BOM Cost Reduction

- µTCA PM: 23%
- ATCA IPMC core: 11%
- ATCA AMC Carrier: 27%

Board Area Reduction

- µTCA: 27%
- ATCA IPMC core: 38%
- ATCA AMC Carrier: 38%

Design Example: MicroTCA Power Module

- Integrated Power Management for MicroTCA Chassis
- Fusion FPGA plus 8051 processor Enhanced Module Management Controller (EMMC)
 - Continuous monitoring of >60 different analog signals
 - Monitor voltage, current and primary shut-off every 100ms on 32 channels
 - Programmable current limit 40ma increments to 10 amps
 - During payload power failure with standby management power
 - All inputs and outputs continue to be monitored
 - All management functions are fully operational
 - Redundant I2C IP platform
 - Independent channels can be primary or backup with redundant PMs
 - Gate logic implemented failure mode response

MicroTCA Power Module (EMMC)

Design Example: Advanced Mezzanine Card (MMC)

- Integrated board monitoring, power management and communications MMC
- On-board analog and digital processing
 - Core8051s processor
 - Dual Corel2C for IPMI
 - Fusion analog processing block
 - CoreUARTapb and CoreGPIO blocks
 - CorePWM controls variable load payload

Load Board Payload

Reference design provides variable load and system monitoring

Advanced Mezzanine Card (MMC)

MA

Design Example: AMC Carrier (Carrier IPMC)

- Management controllers for ATCA AMC Carrier blades
- Fusion FPGA with ARM Cortex-M1 soft processor core
- Digital Logic in Standard IP
 - Corel2C, CoreUartApb, CoreABC, CoreMBX and CoreAl alongside bus fabric cores
- Analog Offload with Standard IP
 - CoreAl used as the analog engine
 - ◆ Raw ADC sampling
 - CoreABC used as the closed loop control of the analog engine
 - Autonomous threshold detection
 - CoreMBX used as the communication medium between the Cortex-M1 and CoreABC processors
 - CoreABC interrupts Cortex-M1 based on certain events via CoreMBX

AMC Carrier Architecture

BOM Comparison: IPMC Core Only

H8S P	PS IPMC BOM (IPM	C Core)	Fusion PPS IPMC BOM (IPMC Core)									
QTY	PART#	Desc	un	it price	ext price	QTY	PART#	Desc	un	it price		ext price
1	HD64F2166	H8S	\$ 2	23.400	\$ 23.40	1	P1AFS600-	PPS + Cortex-M1 enabled	\$	25.000	\$	25.00
1	ECS-2100AX-073.7	oscillator 7.3728MHz	\$	1.063	\$ 1.06		FGG256	Fusion FPGA				
1	TPS3103K33	reset generator	\$	1.103	\$ 1.10	1	CTS636, 25MHz	oscillator	\$	1.020	\$	1.02
2	LTC4300A-1	LTC4300A-1	\$	2.000	\$ 4.00	1	DS1815R	reset generator	\$	0.468	\$	0.47
1	LTC1754	LTC1754	\$	1.550	\$ 1.55	1	2SD2391	1.5V regulator transistor	\$	0.021	\$	0.02
1	SN74LVC2G06	SN74LVC2G06	\$	0.104	\$ 0.10	2	LTC4300A-1	LTC4300A-1	\$	2.000	\$	4.00
1	DS1815R	latch buffer and its control	\$	0.468	\$ 0.47	1	MMBT3904	thermal sensor analog	\$	0.017	\$	0.02
1	SN74LVC2G132	SN74LVC2G132	\$	0.160	\$ 0.16	1	AT24C32/64	serial EEPROM	\$	0.640	\$	0.64
1	SN74LVTH16373	SN74LVTH16373	\$	0.440	\$ 0.44	8		Parts Subtotal			\$	31.17
1	AD1582A	external reference	\$	0.813	\$ 0.81			Assembly Cost	\$	0.050	\$	0.40
1	DS75	thermal sensor digital	\$	0.912	\$ 0.91				Ψ	0.000	Ψ	0.40
1	AT24C32/64	serial EEPROM	\$	0.640	\$ 0.64			TOTAL			\$	31.57
0	SN74LVTH16373	latch buffer	\$	0.440	\$ -							
13		Parts Subtotal			\$ 34.65							
		Assembly Cost	\$	0.050	\$ 0.65							
TOTAL					\$ 35.30							

-39% Improvement in BOM total parts count

- -10% Savings, BOM only cost
- -11% Savings, total cost incl. assembly
- -38% reduction in core board area (1,140mm2 vs. 708mm2): \$4 savings per board

BOM Comparison: AMC Carrier (8 AMC sites)

H8S PPS Carier IPMC BOM with 8 AMC sites								Fusion PPS Carrier IPMC BOM with 8 AMC sites + SoL(PT or SPT modes)							
QTY	PART#	Desc	ur	nit price		ext price	QTY	PART#	Desc	un	it price		ext price		
1	HD64F2166	H8S	\$	23.400	\$	23.40	1	P1AFS600-	PPS + Cortex-M1 enabled	\$	25.000	\$	25.00		
1	ECS-2100AX-073.7	oscillator 7.3728MHz	\$	1.063	\$	1.06		FGG256	Fusion FPGA						
1	TPS3103K33	reset generator	\$	1.103	\$	1.10	1	CTS636, 25MHz	oscillator	\$	1.020	\$	1.02		
2	LTC4300A-1	LTC4300A-1	\$	2.000	\$	4.00	1	DS1815R	reset generator	\$	0.468	\$	0.47		
1	LTC1754	LTC1754	\$	1.550	\$	1.55	1	2SD2391	1.5V regulator transistor	\$	0.021	\$	0.02		
1	SN74LVC2G06	SN74LVC2G06	\$	0.104	\$	0.10	2	LTC4300A-1	LTC4300A-1	\$	2.000	\$	4.00		
1	DS1815R	latch buffer and its control	\$	0.468	\$	0.47	1	MMBT3904	thermal sensor analog	\$	0.017	\$	0.02		
1	SN74LVC2G132	latch buffer and its control	\$	0.160	\$	0.16	1	AT24C256	serial EEPROM	\$	0.740	\$	0.74		
1	SN74LVTH16373	latch buffer and its control	\$	0.440	\$	0.44	8	AAT4610	AAT4610	\$	0.040	\$	0.32		
1	AD1582A	external reference	\$	0.813	\$	0.81	8	LTC4210	LTC4210	\$	3.555	\$	28.44		
1	DS75	thermal sensor digital	\$	0.912	\$	0.91	8	STD95N4F3	STD95N4F3	\$	0.838	\$	6.70		
1	AT24C32/64	serial EEPROM	\$	0.640	\$	0.64	8	ADM4073	ADM4073	\$	0.634	\$	5.07		
8	SN74LVTH16373	latch buffer	\$	0.440	\$	3.52	8	LTC4300A-1	LTC4300A-1	\$	2.000	\$	16.00		
16	LTC4210	LTC4210	\$	3.100	\$	49.60	8	BC847	BC847	\$	0.023	\$	0.18		
8	IRMLS2002	IRMLS2002	\$	0.040	\$	0.32	8	BC857	BC857	\$	0.078	\$	0.63		
8	STD95N4F3	STD95N4F3	\$	0.838	\$	6.70	64		Parts Subtotal			\$	88.61		
16	MIC841	MIC841	\$	0.468	\$	7.49			Assembly Cost	\$	0.050	\$	3 20		
8	LTC4300A-1	LTC4300A-1	\$	2.000	\$	16.00				Ψ	0.000	•	0.20		
8	SN74LVC02A	SN74LVC02A	\$	0.120	\$	0.96			TOTAL			\$	91.81		
8	SN74LVC1G08	SN74LVC1G08	\$	0.166	\$	1.33									
8	SN74LVC1G38	SN74LVC1G38	\$	0.096	\$	0.77		Notes:							
101		Parts Subtotal			\$	121.34									
		Assembly Cost	\$	0.050	\$	5.05		PPS Sorial	Actel Fusion design as a	naly	yzed si	Jppc	orts r Supor		
	TOTAL \$126.39							Pass Through (SPT) modes - Sol Is Not							

37% improvement in BOM total parts count 27% savings, BOM only cost

27% savings, total cost including assembly

38% reduction in board area (4,094mm² vs. 2,540mm²): ~\$35 savings per board

Supported by PPS H8S design.

PPS Actel Fusion design requires no customer

design require a per board royalty to PPS.

royalty to PPS. Customer Designs using PPS H8S

Lessons Learned

- BOM consolidation results are real
- Flash FPGAs with security features enable production flexibility
- IP cores reduce development risk
- IPMI firmware development is non-trivial
- Customers will push environmental envelopes

More Lessons Learned

- Some problems can only be solved in circuit design
- Some problems can only be solved in firmware
- Care must be taken to have the correct developers address problems as a team
- Flash FPGA FPGAs allow more flexibility in solving problems that fall in the gray area

Conclusions

- Standards-based Hardware Platform Management requirements drive up design complexity
- Design solutions using discrete parts add to designer challenges
- Mixed Signal Flash FPGA use reduces design complexity, minimizes BOM parts count, reduces board area and congestion, reduces power consumption and thermal loading, and increases noise and SEU immunity
- Use of design examples proven in hardware reduces risk
- Using with existing IP blocks reduces risk
- Mixed Signal Flash FPGA solutions delivers measurable advantages directly to the bottom line

Actel Corporation

- Established fabless FPGA company
 - First product shipped in 1988
 - \$196M sales in 2007
 - NASDAQ: ACTL
 - Strong balance sheet: \$183M cash and investments, no debt
 - More than 580 employees worldwide
 - #1 nonvolatile FPGA supplier

Contacts:

Mike Brogley

Product Marketing Manager, System Applications

mike.brogley@actel.com

650-318-4982

Ken O'Neill Director, High Reliability Product Marketing <u>keno@actel.com</u> 650-318-4291

