A MULTI-MODE RECONFIGURABLE
OFDM COMMUNICATION SYSTEM ON FPGA

Qingbo Wang, Ling Zhuo, Viktor K. Prasanna

Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, USA
{qingbow, 1zhuo, prasanna} @usc.edu

ABSTRACT

Wireless communication channels suffer a variety of envi-
ronmental interferences. Thus, it is imperative for mission
critical communication systems to have the ability to adapt
to run-time channel conditions. An adaptive wireless com-
munication system can be made multi-modal by implement-
ing various modulation or coding schemes, or by transition-
ing between different communication technologies, such as
SISO-OFDM and MIMO-OFDM.

In this paper, we present an FPGA-based multi-mode re-
configurable OFDM wireless communication system. The
proposed design enables the system to switch between dif-
ferent communication modes, e.g. SISO-OFDM with QPSK
or QAM-16 as modulation schemes. The system is com-
posed of modular functional blocks, such as handshake pro-
tocol, channel measurement trigger, transmission error rate
measurement and mode switching and recovery. It also in-
cludes schemes to enhance packet delivery on low quality
wireless links and reduce data loss during the mode switch-
ing process. The implementation utilizes one PowerPC, 75%
of the slices and 80% of the BRAMs on a Xilinx Virtex Pro
II VP70.

1. INTRODUCTION

Currently, advanced wireless communications can achieve
a very high data rate with Orthogonal Frequency Division
Multiplexing (OFDM) technology. However, wireless com-
munication is usually less reliable than wired communica-
tion, and wireless communication channels suffer more from
environmental interferences. Thus it is desirable for com-
munication systems —especially for mission critical systems—
to be able to detect environmental changes and switch the
communication mode based on channel conditions and sys-
tem performance objectives.

The IEEE standard 802.11a [1] has various communica-
tion modes with possible data rates of 6, 9, 12, 18, 24, 36,

This research is supported by grant DOD-FA9550-05-C-0183.

John Leon

Irvine Sensors Corporation
Costa Mesa, CA 92626-4526
jleon@irvine-sensors.com

48, and 54 Mbits/s. For a communication system to adapt
fully to different operating conditions and standards, there
must be not only the real time transition of modes within a
wireless communication protocol, but also a transition be-
tween different communication technologies, such as SISO-
OFDM and MIMO-OFDM.

FPGAs have long been considered an attractive option
for high-performance implementations of wireless commu-
nication systems [2]. The demand for adaptability on such
systems can be satisfied by currently available software and
hardware techniques on FPGAs. Leading field programmable
device vendors provide technologies to change the logic func-
tion of application systems dynamically, thus enabling the
design of adaptive communication systems.

However, when realizing a run-time mode switching on
such adaptive systems, many issues must be addressed. For
example, we must design the triggers to start channel mea-

surements, determine measurement metrics, select mode switch-

ing mechanisms, and ensure that packets can be transmitted
reliably even in wireless channels with poor connectivity.
Moreover, a coordination protocol is needed to integrate all
these individual designs for the system to work with multi-
ple wireless nodes.

We propose a modular design to facilitate the mode switch-
ing between communication schemes. By decomposing the
system into multiple functional modules, we exploit the mod-
ularity inherent in these systems. The system design for
mode switching includes handshake protocol, channel mea-
surement trigger, transmission error rate measurement, mode
switching and recovery, as well as schemes to enhance packet
delivery on a low quality wireless link and to reduce data
loss due to mode switching. These mechanisms, except for
the handshake protocol, work as individual actions at differ-
ent stages of the handshake protocol procedure.

The modularity of our implementation allows individual
modules to be substituted for others. For example, the mea-
surement of transmission error rate can be purely software-
based or hardware-generated BER (bit error rate), depend-
ing on the availability of certain functional features on the

development platform. The mode switching module can be
implemented either by reconfiguring the hardware logic or
by changing control parameters to adjust the functionality of
the module. In addition, the trigger functions can be man-
ually and/or automatically controlled, and can be turned on
and off based on user demand. We also propose a buffer
management mechanism to alleviate data loss during mode
switching. The proposed design is modular enough to ac-
commodate this diversity.

Our experimental system is based on the WARP [3] hard-
ware platform and utilizes its wireless open-access research
framework. The development boards include one FPGA
board with Xilinx Virtex II Pro, and several add-ons, such
as a radio board and a clock board. During our experiment
in lab environment, the completed system achieved wire-
less bandwidth from 2 to 7 Mbps depending on the differ-
ent modulation schemes. The system shows robustness and
takes about 200-560 ms to finish the handshake protocol and
switch from one mode to another. This time depends on the
error measurement scheme and the timer setups for auto-
matic packet re-transmission needed by the handshake pro-
tocol. The implementation utilized one PowerPC, 75% of
the slices and 80% of the BRAMs on the Xilinx Virtex Pro
II VP70.

In Section 2, we present related work. We introduce our
design in Section 3. In Section 4, we present our hardware
implementation on FPGAs. The experimental setup and the
results are discussed in Section 5. In Section 6, we conclude
by discussing opportunities for improvement.

2. BACKGROUND AND RELATED WORK

OFDM has become standard technology to improve channel
utilization for wireless communication. Frequency Division
Multiplexing (FDM) transmits multiple signals simultane-
ously over a single path. Each signal has a unique frequency
range (carrier). Orthogonal FDM (OFDM) [4] is a special
case of FDM where a single data stream is distributed over
several lower rate sub-carriers. In other words, one signal
is transmitted by multiple carriers. Sub-carriers are sepa-
rated by given frequency ranges to avoid cross-carrier in-
terference. The benefit of orthogonality is a high spectral
density. A third dimension, space, is introduced into the
traditional frequency-time domain. The idea is to transmit
multiple streams of data on multiple antennas at the same
frequency to increase throughput. Typically, multiple re-
ceiver antennas are used as well. Multiplied by the number
of channels between either end, this configuration achieves
high data rates. This principle is called Multiple Input Mul-
tiple Output (MIMO) [5].

Many efforts have been carried out on the implementa-
tion of SISO- and MIMO-OFDM physical layers from re-
search areas involving DSP, VLSI and FPGA. An OFDM

Wireless Transceiver was implemented using IP Cores on
an FPGA [6]. In [7], Masselos K, et al. discussed the imple-
mentation of wireless multimedia communication systems
on reconfigurable platforms.

FPGA-based designs have performance advantages over
DSP designs of OFDM communication systems. For ex-
ample, the design discussed in [8] aimed to implement a
wireless communication physical layer compliant with the
802.11n standard. The authors identified the pipeline prop-
erty in the architectural design of such streaming systems,
and used one streaming FFTx IP core to fulfill the demand
for two high speed FFT computations, thus reducing the cost
of hardware development.

Researchers have explored applications invovling dynamic
reconfiguration on FPGAs. In [9], the authors proposed a
way to convert a bus into a group of point-to-point connec-
tion harnesses, which can facilitate the reconfiguration pro-
cess. Fu, et al [10] studied scheduling algorithms for recon-
figuration, especially performance optimization through ad-
justing the scheduling intervals between each configuration.
An application utilizing the hardware dynamic reconfigura-
tion technology in signal processing was introduced in [11].

In our study, we focus on the general procedure for an
adaptive wireless communication system to conduct mode
switching based on measured channel conditions. We imple-
mented a system with such capabilities on a commercially
available FPGA development platform [3].

3. RUN-TIME MODE SWITCHING SYSTEM

In this section, we outline our system design, and describe
the functionalities of individual modules, as well as the in-
teraction between these modules. A handshake protocol acts
as the skeleton for the entire system and coordinates other
components. We start by presenting a system overview from
the perspectives of participating wireless nodes.

3.1. Node Operational Flow

In this paper, a mode switching takes place between two par-
ticipating wireless nodes, one designated as a server, and
the other as a client. However, the scheme can be easily
adapted to more complex scenarios with one server and mul-
tiple clients. Note that we use “mode switching” at times to
refer the entire mode switching process (or protocol), which
is from the beginning of a trigger signal to the completion
of an actual communication mode switching.

As illustrated in Figure 1, there are two ways to initiate
a mode switching. The first is to adopt an automatic trigger
signal that is generated periodically after the system powers
up. The second way is to push a button or flip a switch man-
ually to generate a trigger signal. These signals cause inter-
rupts to the system. The interrupt service routines (ISR) then
start the handshake protocol, and turn the node into a mode

Tenuel | > Shorter Timap>
Trigger
-

Handshake

Protocol

Runtime Mode j
Switch, if Needed

Fig. 1. System Overview

switching state. The mode switching state is a state where
the nodes conduct mode switching protocol only, contrary
to the normal state, where normal data communication be-
tween the nodes takes place. Only server nodes have this
trigger mechanism to initiate the mode switching process.
After starting the handshake protocol for mode switching,
The server node contacts its client, which then also enters
mode switching state. The client side operations are differ-
ent from those on the server side, and both are described
in detail in the next section. Through the exchange of the
handshake protocol packages, the server and its client reach
an agreement on when to start measuring the channel con-
ditions. The results of measurement are an indication of the
channel quality, and used to decide whether a mode switch-
ing is needed. Measurement schemes are selected based on
preferred channel quality metrics and available facilities in
the software and hardware environment for system design.
This scheme should be agreed upon beforehand between
server and client so that all participating nodes interpret the
measured results in a consistent way.

In our design, the two trigger schemes both function in
run-time. They use the same timer to generate interrupts.
However, the manual scheme sets a shorter expiration time
for the timer, so that the handshaking appears to start imme-
diately after the button is pressed.

3.2. Handshake Protocol

The handshake protocol works in three phases, as illustrated
in Figure 2. The first phase is called the “initiation phase.”
When interrupted by an expired timer, the mode switching
server stops all routine activities and enters the mode switch-
ing state. The server sends “start” packets to the client peri-
odically, until it receives an “ack_start” from the client. On
the client side, the “ack_start” is sent out periodically upon
receiving a “start” packet. This phase is completed when
the server receives the “ack_start.” By that time, both par-
ties confirm they all enter the mode switching state and are
ready for the next phase.

The second phase is called the “measurement phase.”

\Stan
> Initation
‘/Ack’start
B
Measwe
Ment F,
Or Bitsire oS
\End > Measurement
Result_EN
«— _J
] ; A
Quiescent Quiescence
Period Detected ¥
®/ > Synchronization
_—synet
Ack\ Syn, ch
T

1 Server Mode Changed
2 Client Mode Changed

Fig. 2. Illustration of the Handshake Protocol

The server continuously sends a predefined bitstream, or a
sequence of predefined short packets. After all the data is
transmitted on the server side, the server sends “end” pack-
ets to inform the client that no more “measurement” packets
will be sent. Once receiving an “end” packet, the client cal-
culates the transmission error rate, and then sends the result
back in a “result_end” packet. We will explain the transmis-
sion error rate and its calculation in Section 3.4. This “re-
sult_end” packet is equivalent to an acknowledgment packet
to the server. Receiving the “result_end” notifies the server
that the measurement succeeded, and concludes this phase.
In the last phase, the “synch phase,” the nodes change
the communication mode based on the measured result, and
then go back to the normal state for communication. The
mode switching decision is made by individual nodes based
on a pre-defined mode switching table. All participating
nodes store the same table in their memory. Note that at
the beginning of this phase, the client is still sending the
“result_end” packets, without knowing whether the server
received this acknowledgment. When the server receives
the result, it may initiate a mode switching according to the
pre-defined table. However, this uni-lateral action leaves the
server and client nodes working in different modes. Hence
the server can no longer communicate with the client node,
and the client does not know whether it should change modes.
We devised a “quiescence” scheme to handle this situ-
ation: After switching its mode, the server stops any trans-
missions over the air. The client sets up a “quiescence” timer
while continuing to send “result_end” packets to the server
side. This timer is reset to the initial state whenever an valid
“end” packet from the server side is received. When this

timer expires, it means that the client has not received any
“end” packets from the server in a given time period. This
informs the client that the server has already changed its
mode. At this moment, the client is safe to change its mode
according to the same mode switching table. After that, the
client sends out “synch” packets periodically. The server
acknowledges those packets with an “ack_synch.” This ex-
change leads both nodes to return to the normal state.

3.3. Mode Switching

The mode switching mechanism is a critical function of this
system. There are two ways to switch communication modes
based on the current available technologies. One is to build
a comprehensive core, which includes the necessary func-
tionality for all the modes. By design, different mode oper-
ations share a certain amount of hardware logic within the
core. To allow different logic blocks to collaborate with each
other, special control logic is implemented to (re)arrange all
blocks to achieve requested mode functionalities, thus real-
izing mode switching. This is similar to the Software Pro-
grammable Reconfiguration approach (SPR) [12], except that
the mode switching control is achieved via custom-designed
logic. The other way is to follow the Dynamic Partial Re-
configuration design flow (DPR) [13]. This approach re-
quires multiple designs for each reconfigurable subregion
inside a core. These different designs are compiled into
corresponding partial reconfigurable bitstreams, all of which
are stored in flash memory. When it is time for reconfigura-
tion, the PowerPC on FPGA reads in the appropriate par-
tial design bitstream from flash memory, and writes it to
the FPGA configuration memory through ICAP. ICAP is
Internal Configuration Access Port, through which Power-
PCs can access the FPGA configuration memory at run time.
This bitstream re-wires the hardware logic in the reconfig-
urable subregion on the FPGA. The first method takes less
time to finish functional alterations, while the second is area
efficient comparatively. Our design adopts the first approach.
We use two different wireless communication modes for
our example design - SISO-OFDM with QPSK modulation
and SISO-OFDM with QAM-16 modulation. A SISO-OFDM
baseband transceiver with QPSK modulation yields lower
bandwidth, compared to a QAM-16 modulated SISO-OFDM
transceiver. However, it produces fewer packets with errors
under the same channel condition, thus appearing more ro-
bust than the mode with the QAM-16 modulation. In our
system, we employ a scheme to measure how many erro-
neous packets or bits are received over a fixed amount of
data. The results of this measurement are used as an indica-
tion of channel quality to trigger switching between modes.
Figure 3 illustrates the mode switching scheme used by
our system. In this design, SISO-OFDM with QPSK mod-
ulation switches to SISO-OFDM with QAM modulation, a
more erroneous mode, to procure higher bandwidth when

Error rate exceeds threshold

QAM_16
Higher Bandwidth

Higher Error Rate

Error rate falls below threshold

Fig. 3. Mode Switching Strategy

the nodes find that the channel condition is in good quality.
Similarly, SISO-OFDM with QAM-16 can switch back to
the less erroneous mode with QPSK modulation to reduce
error rate in transmission when the channel quality worsens.

3.4. Key algorithms and Design Issues

The design for measuring transmission error rate involves
two possible methods. One uses a software method only. A
large number of pre-defined short packets are sent from the
server to the client. On the client side, the received “good”
packets are counted. At the end, the total number of the good
packets are sent back to the originating server. This mea-
sured result is then used to decide possible mode switching
actions. The second method utilizes the built-in hardware
bit error rate (BER) generation unit in the WARP hardware
platform. A pre-defined bitstream is sent from the server to
the client. The client, loaded with the same bitstream, can
compare the received bitstream with the one stored in its
memory to count the number of erroneous bits, thus obtain-
ing the BER. This result is also sent back to the server for
decision making on mode switching. This hardware-assisted
function may not be available in other development environ-
ments, so our current design uses the software method. Note
that the results received at server side are unlikely wrong,
due to the use of CRC ckecksum in the packet header and
the re-transmission mechanism employed by the handshake
protocol.

This system design must consider the unreliable wireless
connection at the time of mode switching. Mode switch-
ing typically occurs when the link quality fluctuates, usu-
ally worsening. A common way to obtain reliability be-
tween two nodes is to retransmit packets automatically. This
scheme was first adopted in our design. The server starts a
timer when it sends out a packet. If the server does not get
an “ACK” when the timer generates an interrupt, it will re-
transmit the last packet. However, it is possible the ACK
is lost or corrupted over the transmission. Moreover, on
our experimental platform, the original packets and their ac-
knowledgements often collide with each other. Since the
entire mode switching process must complete quickly, we
can not afford re-transmissions than necessary. An better

ACK transmission scheme can improve the performance of
the handshake protocol. As shown in Figure 4, besides the

Server Client

Client Timeout

Server Timeout
>
%\

Fig. 4. 2-timer Scheme for Reliable Transmission

timer used on the server side for the original packets, we use
another timer with a shorter expiration time set up on the
client side for the ACK packets. That is, both the server
and client implement a re-transmission mechanism. This
scheme increases the probability that ACKs are received,
and can circumvent possible collisions on our hardware plat-
form to improve the ACK delivery. Our run-time experi-
ments proved that the scheme works reliably and achieves
better performance for the handshake protocol, thanks to
fewer re-transmission overhead.

To mitigate data loss over the entire mode switching pro-
cess, we introduce an SRAM buffer to store incoming pack-
ets before sending them for processing. The size of the
buffer depends on the application’s incoming data rate and
the time spent on the entire mode switching process. Over-
flow may occur if the incoming traffic exceeds a data rate
threshold, at which the SRAM buffer size is deducted. Also,
it is possible, although highly unlikely, that the server and
client mis-communicate and switch to different modes. We
must enlist an exception handler to prevent the nodes from
losing contact with each other. In our design, we use a “roll-
back” mechanism. When transmitting non-measurement pro-
tocol packets, the nodes use base modulation (BPSK in our
system) for the packet header transmission. Thus, a node al-
ways knows the source node from which the packets are ar-
riving by looking at the packet header’s source address. The
node can tally the number of packets it receives from certain
node, but whose payloads can not be decoded. When this
number exceeds a preset threshold, the node concludes the
communication modes between the two are asynchronous.
This node then sends “rollback” packets using base modu-
lation to the source node, which acknowledges the rollback
packets using “ack_rollbacks.” The two nodes recover to
their last viable, common communication mode, and resume
the handshake protocol operation.

4. SYSTEM IMPLEMENTATION

4.1. Implementation platform

We used WARP boards [3] as our implementation platform.
This toolkit is a scalable and expendable development en-
vironment for advanced wireless networks. We used the
FPGA, Radio, and Clock boards. The FPGA board is the
mother board with a Xilinx Virtex II Pro VP70, 4MB of
SRAM, and extension slots. It is used to implement all the
PHY layer logic, basic MAC layer protocol, and user level
MAC protocols. Radio and Clock boards are add-ons, which
are plugged into the extension slots on the FPGA board. The
radio board implements the analog functionalities, includ-
ing D/A, A/D, and RF transceiver. One can install 1 - 4
radio boards onto the FPGA board’s extension slots to en-
able SISO or MIMO transmission. The Clock board is used
to synchronize the clocks between different boards.

4.2. Implementation Details

Based on the basic WARP library, we developed a C pro-
gram on PowerPC to extend the basic MAC layer proto-
col with our mode switching design. The trigger mecha-
nism, handshake protocol, transmission error rate measure-
ment, and mode switching control were all implemented in
the category of “User-level MAC,” as shown in Figure 5.
Through the drivers and bus controllers, the MAC layer soft-
ware controlled the underlying hardware logic and the ac-
cess to SRAM on the board.

User-level MAC

WARPPHY WARPMAC

PPC Code

PHY Timer Misc iionyiot User 110 Ethemet
E N Controller
Driver Driver Drivers s Drivers

o PPG
MAC Driver || g

OPB DuA PLB
' ' plbzopt

aaaaaaaaaaaaa

Ethernet
MAC

Interrupt
Controller

BRAM Packet
Buffers

FPGA Logic

Fig. 5. System Diagram [3]

The timers used in this design were all implemented on
hardware, and were controlled as peripherals by the soft-
ware through the OPB bus. When firing, they register an
interrupt to CPU, which then executes the corresponding in-
terrupt service routine (ISR).

Part of on-chip BRAM was used as the instruction and
data memory for the PowerPC processor. The other part was
configured to serve as a buffer and store Ethernet and wire-
less packets, both inbound and outbound.

There are two banks of SRAM on the board, each of
which is 2 MB. The first bank of SRAM was used as the

heap and stack for the PowerPC, while the second bank of
SRAM was used to implement the buffer for data loss relief.

4.3. Packet Format

PktType - SrcAddr

Indicating normal
or protocol packets

Fullrate | Length

Resend Payload

6*FF for Broadcasting
or handshake protocol

Passing the
measurement results

Fig. 6. MAC Packet Format with Definition of Special
Fields

In this system, we utilized the MAC packet header for-
mat in the WARP development environment to facilitate the
design of our protocol packets. From Figure 6, we see that a
64-byte packet header was divided into 8 fields. The MAC
layer protocol checked the destination address of every in-
coming packet. We used the broadcast destination address
of all ‘1’ to specify that the packet is probably used for mode
switching protocol. The packet header was further checked
on its “pktType” field to determine which type the packet is.
From Table 1, we see that packets were of two major types,
one for normal data communication, including “Data” and
“Ack.” The others were for mode switch protocol use, i.e.
the packets with pktType number higher than 1. At present,
we have 9 kinds of different protocol packets. This “pk-
tType” field is one byte long, so the maximum allowable
number for different packets is 256.

Table 1. Packet Classification

Field number | Packet Type
0 Data
1 Ack
2 Start
3 Ack_Start
4 Measurement
5 End
6 Result_End
7 Synch
8 Ack_Synch
9 Rollback
10 Ack_Rollback

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

We used two PCs as the experimental stations. They each
were connected to an FPGA board through its Ethernet port.

The two FPGA boards were configured as a client and server
by software. On one of the PCs (either the server or client),
VLC media player [14] waited on a UDP port for incoming
video packets. On the other PC, VLC was configured to
send video clips to the waiting machine. In Figure 7, the
video sender transmits the data, while the video receiver gets
the data and plays it if the data is decoded correctly. The
wireless link between the two nodes acted as a bridge only,
transparent to both PCs.

Video
Sty Local PC Local PC
'y

A

Ethernet Wireless Link Ethernet
——
A J A J
FPGA FPGA
Board Board

Fig. 7. Experimental Configuration

Replacing the VLC player with iperf [15] in the same
setup, we measured the maximum bandwidth in terms of
either TCP or UDP between two end points.

5.2. Experimental results

We conducted mode switching experiments in a lab environ-
ment between two SISO-OFDM wireless communication
nodes, but with different modulation schemes, e.g. QPSK
or QAM-16. Using the above setup and VLC player, video
clips were streamed from one PC to the other for playing.
The mode switching protocol ran periodically, and printed
transmission error rate measurement results and current com-
munication modes onto the text terminal interfaces via se-
rial port every time a measurement was performed. A mode
switching took place when the measured results for wire-
less link quality crossed a threshold. For the sake of exper-
iment, we used a hair dryer in the vicinity of the wireless
boards to introduce interferences. The generated magnetic
noise led to changes in measurement of transmission error
rate. Upon completion of a mode switching, new communi-
cation modes were displayed by the user terminal interface.
When a mode switching was observed, the video display on
the receiving PC showed little or no blocking effects, which
means the time spent on the entire mode switching process
was tolerable for the real-time video streaming on our ex-
perimental platform.

The wireless boards are shown in Figure 8. Without
adding interference, we measured the available end-to-end
bandwidth for the two modulation schemes using “iperf.”
The recorded measurement results showed variation between
2 to 7 Mbps.

The completed design utilized one PowerPC and 70% of
FPGA slices. The BRAM usage is 264 out of 328 at about

Fig. 8. Experimental Boards

80%. The hardware utilization for each individual compo-
nent can be found in Table 2.

Table 2. Utilization for Major Components

Component Slice | Slice FF | 4-input LUT

OFDM 8246 11241 10380
AGC 2535 3245 2631
Radio Controller || 814 659 1222
Ethernet MAC 2532 2919 4085
Opb_timer 262 313 270
Ofdm_timer 117 178 141
PktDetector 406 468 430

During the experiment, the measured time for the en-
tire mode switching process varied between 0.5 and 0.6 sec-
onds. We used the software approach for transmission error
rate measurement by sending 2000 short packets between
the two nodes. The time used for sending “measurement”
packets (see Section3.2) alone took 0.45-0.5 seconds. When
we used fewer short packets for measurement, the time spent
on this procedure can be cut down proportionally. If the
hardware BER measurement scheme available on our ex-
perimental platform is used, the time used for measuring the
link quality can be further shrunk. Timer setups may also
be adjusted to reduce the time spent by the handshake pro-
tocol. However, the time to conduct entire mode switching
processing is at least 200 ms based on our experiments, be-
cause the wireless packet transmission takes time. This time
can be used to find the maximum allowable incoming traffic
data rate under a given buffer size, when data loss must be
avoided completely. Conversely, the time can be used to de-
termine the size of the buffer given the data rate demanded
by incoming traffic.

6. CONCLUSIONS

We built an FPGA-based wireless OFDM communication
system that can switch its operation between different com-
munication modes. The design is modular in that it can in-
corporate different wireless condition measurement schemes
as a feedback to the system, and can use different mode
switching techniques to transition between different modes.
Tests in a lab environment showed that the design was ro-
bust, and satisfied the functional requirements. The system
can be improved by further study on individual modules. For
example, we can develop different schemes to measure vari-
ous channel quality metrics, as may be demanded by distinct
working environments and diverse system design goals. We
may also explore different mode switching technologies and
embed dynamic reconfiguration schemes, such as DPR, into
our design.

7. ACKNOWLEDGMENTS

We are grateful to Dr. Jon Sjogren from Air Force Office
of Scientific Research (AFOSR/NE) for his support on this
project.

8. REFERENCES

[1] LAN/MAN Standards Committee of the IEEE Com-
puter Society, “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifica-
tions High Speed Physical Layer in the SGHz Band,”
ANSI/IEEE Std 802.11, 1999.

[2] C. Dick and F. Harris, “Fpga implementation of an
ofdm phy,” Signals, Systems and Computers, 2003.
Conference Record of the Thirty-Seventh Asilomar
Conference on, vol. 1, pp. 905-909, Nov. 2003.

[3] WARP Team, Rice University, “http://warp.rice.edu.”

[4] J. Terry and J. Heiskala, OFDM Wireless LANs: A The-
oretical and Practical Guide, 2nd ed. Sams Publish-
ing, July 2001.

[5] G. L. Stiiber, J. R. Barry, S. W. McLaughlin, Y. G.
Li, M. A. Ingram, and T. G. Pratt, “Broadband mimo-
ofdm wireless communications,” in Proceedings of the
IEE, vol. 92, no. 2, Feb 2004, pp. 271-294.

[6] Lattice Semiconductor, “Implementation of an ofdm
wireless transceiver using ip cores on an fpga,” 2005.

[7] K. Masselos, A. Pelkonen, M. Cupak, and S. Blionas,
“Realization of wireless multimedia communication
systems on reconfigurable platforms,” J. Syst. Archit.,
vol. 49, no. 4-6, pp. 155-175, 2003.

[8] J. Park, H. Jung, and V. Prasanna, “Efficient fpga-
based implementations of mimo-ofda physical layer,”
in ERSA, 2006.

[9] S. Koh and O. Diessel, “The effectiveness of configu-
ration merging in point-to-point networks for module-
based fpga reconfiguration,” in Proceedings of FCCM,
2008, pp. 49-60.

[10] W. Fu and K. Compton, “Scheduling intervals for re-
configurable computing,” in Proceedings of FCCM,
2008, pp. 49-60.

[11] M. French, E. Anderson, and D.-I. Kang, “Au-
tonomous system on a chip adaptation through partial
runtime reconfiguration,” in Proceedings of FCCM,
2008, pp. 49-60.

[12] Altera Corporation, “http://www.altera.com.”

[13] Xilinx Incorporated, “http://www.xilinx.com.”

[14] the VideoLAN team, “http://www.videolan.org.”

[15] NLANR/DAST, “http://dast.nlanr.net/Projects/Iperf.”

