

Actel's RTAX4000S Space Qualification Update

Solomon Wolday, Roopa Kaltippi, Don Kinell September 2008

RTAX4000S Qualification Summary

- Introduction
- Qualification Vehicles
 - RTAX4000S-CG1272 Master design
 - ► Qualification Burn-In (QBI) block
 - ► Enhanced Antifuse Qualification (EAQ) block
 - ► High single S-Antifuse & High single B-Antifuse (HSB) block
- Qualification Experiments
 - HTOL
 - ♦ LTOL
 - Thermal Runaway Characterization
 - Generic BI Qualification
 - ► RTAX4000S Generic BI Features & Implementation
 - ► Generic BI Experiments
- Class V Qualification Status

Introduction

RTAX4000S is Actel's most recent and largest antifuse FPGA

- Wafers fabricated on 0.15 µm process at United Microelectronics Corp (UMC), Taiwan
- 4 million user gates
- System Solution 30 times the size of an RTSX32SU
- First Antifuse FPGA that offers up to 4 Million system gates with enhanced features:
 - Embedded RAM blocks
 - Extensive I/O standard support
 - Hardened charge pump, clock trees, Power On Reset circuit
 - TMR Flip Flops

	RTAX4000S
Equiv. System Gates	4,000,000
ASIC Equivalent Gates	500,000
Dedicated Registers	20,160
Max Registers	42,840
I/O Registers	2,520
Total Modules	60,4 <mark>8</mark> 0
RAM Blocks	120
Total RAM Bits	540K
Max User I/Os	840
Packages	352-CQFP 1272-CCGA/LGA

Qualification Vehicles

RTAX4000S-CG1272 was used for the qualification

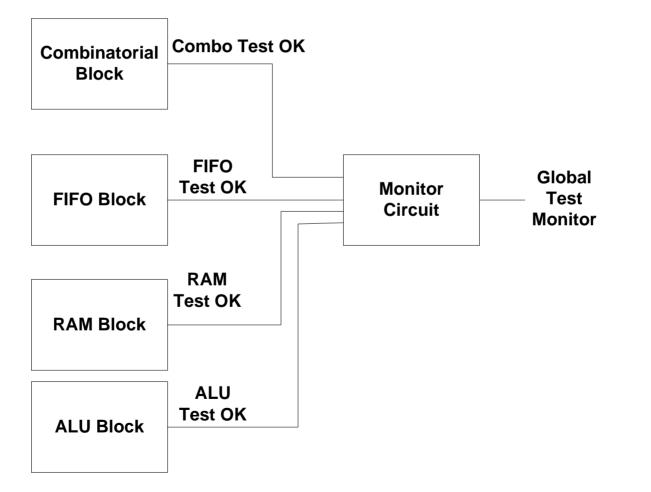
- Utilizing the largest package to ensure maximum number of I/O's were exercised
- Master design specially generated for the RTAX4000S
 - Design includes all types of reliability test designs used for RTAX-S
 - QBI: Maximizes resource utilization
 - EAQ: Uses highly perceptive and stressful designs for antifuse evaluation
 - HSB: Maximizes the utilization of single S-Antifuse and single B-Antifuse
 - TID, SEE blocks are also added in the Master design

Design Utilization

Inf	0					Utilization				
		Pins	Clocks				Logic Cells		Summary	
									seq +	Total
Device	Package	I/O	RCLK	HCLK	RAM/FIFO	Carry Chain	R-Cell	C-Cell	combo	Modules
RTAX4000S	CG1272	840	4	4	120	387	20,155	40,298	99.96%	60,453

- Different I/O standards are utilized in the design
 - Single ended, differential, and voltage referenced I/O's are configured

RTAX-S QBI block

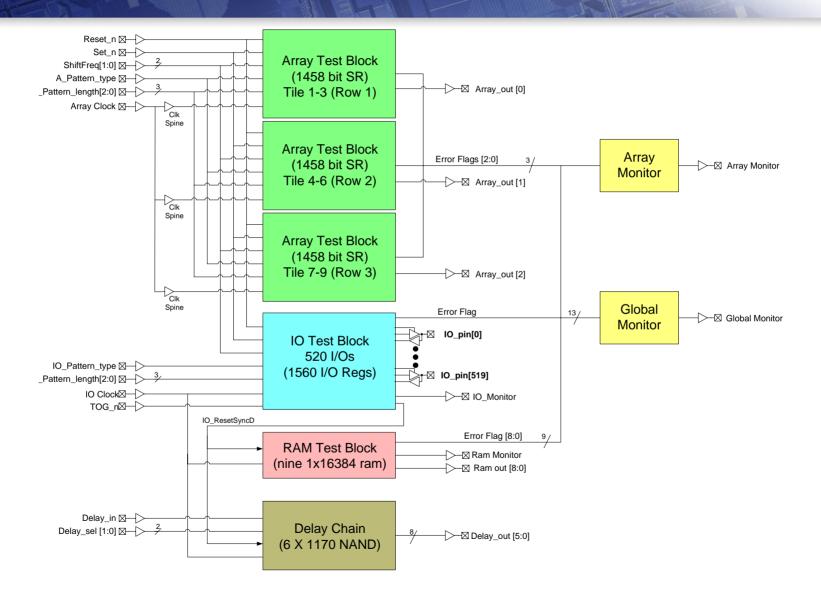

Design Overview

- QBI (Qualification Burn In) design
- Goal of this design:
 - Maximum utilization of logic cells
 - Test all IO standards
 - Testing of all macros offered (like Carry chain, buffys etc)
 - Test RAM feature
- QBI block also used as Quality Control Monitor (QCMON) design in smaller devices

QBI DESIGN FEATURES

Top level design includes different blocks to ensure testing of all device features with maximum utilization

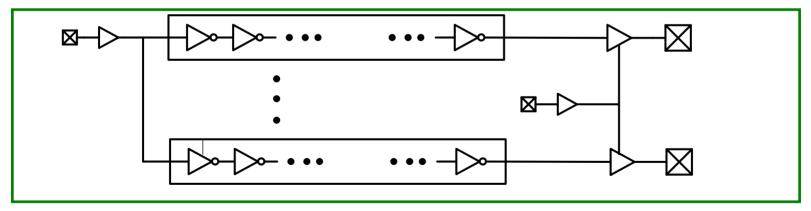
EAQ Design Overview



Goal of Enhanced Antifuse Qualification (EAQ) design

- Design used for study of antifuse reliability experiment
- Design fully utilized smaller devices
 - ♦ RTAX2000S, RTAX1000S, RTAX250S
- Design has high perceptibility of delay measurement deltas
 - Multiple delay lines of combinatorial modules
 - ♦ I/O test block
 - RAM test blocks

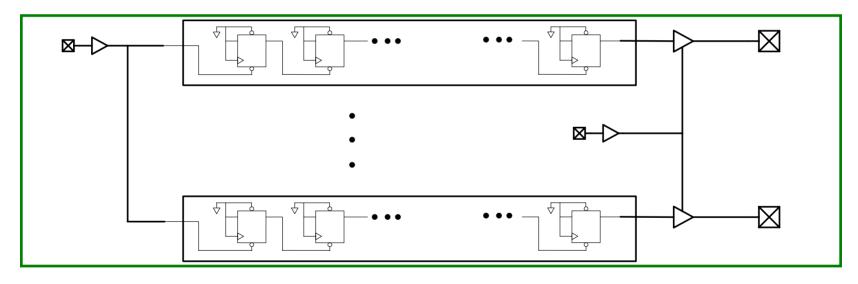
Top level diagram (EAQ Block)



HSB Design Overview

Goal of High Single-S and Single-B antifuse design

- Increase the utilization of Single-S and Single-B antifuse
- Short delay lines of combinatorial and sequential logic
- Multiple delay lines per device compared against each other at every burn-in pull point
 - Combinatorial delay lines shown below


Combinatorial delay lines

HSB Design Overview

Sequential delay lines

 Both sequential and combinatorial delay lines exercised during burn-in with the same 2 MHz clock frequency

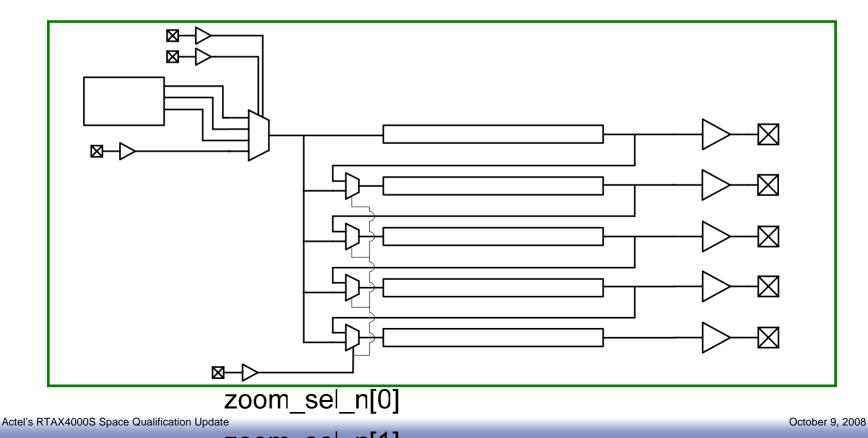
Sequential delay lines

gnd

10

PRE

Q


D

SEU Combinatorial Delay Block

11

- SEU delay lines have longer delays compared to EAQ and HSB delay lines
 - The delay line could be exercised through an input pin or a clock divider block
 - Each delay line can be cascaded to make up one long delay line

Master Design - Antifuse Utilization

Antifuse Type	Number of Antifuses	Description
F	69,251	Between module output segment & short vertical segment
н	21,370	Antifuse between two horizontal tracks
I	127,644	Between short horizontal segments & module input segment
S	42,710	Semi-direct antifuse
V	10,179	Antifuse between two vertical tracks
X	72,244	Antifuse Between short horizontal & vertical segments
К	14,379	Between routed clock horizontal segments & module input segment
CSR	10,144	Antifuse for I/O configuration options
SSR1	8	Silicon Signature antifuse in silicon signature words
LDH	600	Horizontal inter-tile antifuse
LDV	2,925	Vertical inter-tile antifuse
В	4,160	Between local segment (DB inverter output) & input segment
LL	10,219	Between RX/TX input/output module segment & long horizontal/vertical segment
Total Antifuses	1,265,487	

Qualification Experiments

Qualification was done with MIL-PRF-38535, Class EV Level Compliance

- Master Design used to program qualification life test devices
 - Tri-temp (-55°C,125°C, 25°C) functional testing performed
 - Qualification devices processed through class EV assembly and screening before programming
- Group C test
 - (High Temp Operating Life) HTOL stress at 125°C for 1,000 hours
 - ♦ 77 RTAX4000S-CG1272 devices were programmed for this test
 - Burn-In performed at maximum supply conditions of V_{CCA}=1.6V & V_{CCI}=3.6V
- Group A, B, D, ESD, Latch-Up, IO Capacitance were also performed
- Characterization completed with 2 lots of RTAX4000S
 - Characterization report available with the qualification report

Qualification Experiments Cont'd

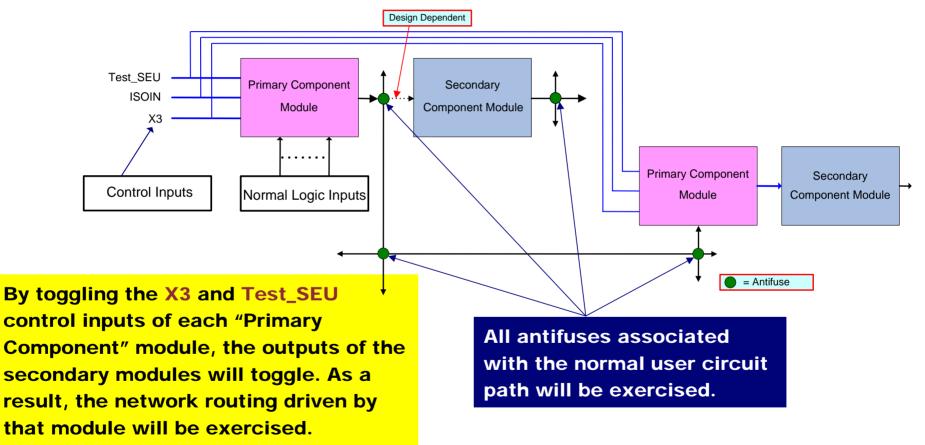
Qualification Experiments Cont'd

- LTOL (Low Temp Operating Life) test
 - ♦ 24 RTAX4000S devices were stressed for 1,000 hours of LTOL at -55°C
- Class B qualification of the RTAX4000S completed at the end of 2007
- Thermal runaway characterization completed
 - Thermal runaway characterization was completed up to junction temperature of 150C
 - No thermal runaway issues were found

Class V Qualification

- The 1,000 hours HTOL extended to 6000 hours to qualify the RTAX-S family as class EV device
 - Qualification devices completed 5000 hours HTOL with <u>NO</u> silicon failures
 - Class V qualification to be completed with the 6000hrs HTOL on schedule for Nov 2008
- Qualification devices have been processed through class EV flow
 - Class EV screening performed starting from assembly through blank device screening
- Same "Master" design will be used for production Enhanced Lot Acceptance (ELA) test

RTAX4000S Generic Burn-in


Generic Burn-in Features

- Actel customers will never need to generate specific test patterns for their programmed RTAX4000S design, <u>saving both time and costs</u>.
- ASIC burn-in test vectors often achieve less than 70% AC toggle coverage of the design whereas an Actel Generic Burn-in provides <u>complete network exercise</u>.
- <u>Specific Burn-in boards are not required</u> to accommodate custom user designs.
- RTAX4000S Programmed parts with <u>multiple designs can be burned-in</u> <u>simultaneously using</u> "Actel Generic Burn-In" boards.
- The generic burn-in test is implemented using <u>existing</u> global test circuit commands
- Simplified schematic of the combinatorial module test shown on next slide

Simplified Signal Path Schematic

Schematic of the combinatorial module path

Generic Burn-in Verification and Qualification

- Verification of the Generic Burn-in concept was performed with software simulation and burn-in system
 - Bench level testing using dedicated Silicon Explorer probe pin outputs as well as TDO outputs verified cell toggling on all the available device features
 - Logging of pre and post burn-in data required
- Generic Burn-in qualification was completed with 1000 hours HTOL
 - Pre and post Burn-in data is logged and compared at each pullpoint
 - 24 RTAX4000S-CG1272 devices were used for the qualification
 - All devices passed successfully and no delay or faults were observed
 - These are the same devices which were used for the LTOL qualification

Conclusion

- Actel has successfully completed the Mil-Std 883B qualification of the RTAX4000S
 - Reliability experiments with HTOL and LTOL were completed with <u>NO</u> silicon failures
- Generic burn-in feature verification and qualification was completed
- Class V qualification of the RTAX4000S will be completed with 6000 hour HTOL
 - 5000 hours already completed with no silicon failures and 6000 hours HTOL will be completed by November 2008
 - All qualification devices were processed through Class V process flow
 - This will establish Class V level compliance for RTAX-S products