Application Acceleration within a High-level Language Reconfigurable Computing Framework

Phillip M. Martin, Melissa C. Smith
Clemson University
Sadaf Alam, Pratul Agarwal
Oak Ridge National Laboratory
Outline

- Purpose
- Overview of Candidate Application
- Performance Estimation
- Analysis and Conclusion
Purpose of Study

- Two challenges to widespread adoption of reconfigurable platforms:
 - Sustained performance in the presence of data transfer overheads
 - Cross-platform HLL SDK
- Why adopt RC platforms?
 - Increase compute power/node
 - Reduce required node-to-node communication

[IBM Corp., 2006]
LAMMPS

- A molecular dynamics simulator
 - Production application - wanted to examine a real life application
 - Used in material science, computational bio, etc.

- Examined LAMMPS for “hot spots” using Xprofiler on a 1.3Ghz IBM Power 4
 - Used Rhodopsin benchmark

- 68% of execution time spent in `pair_lj_charmm_coul_long:compute`
 - Computes the electrostatic and van der Waals forces between ‘pairs’ of atoms
 - The function has 96 double precision multiplies, 7 divides, 81 addition/subtractions

\[
E(\text{potential}) = \sum_{\text{bonds}} f(\text{bond}) + \sum_{\text{angles}} f(\text{angle}) + \sum_{\text{torsions}} f(\text{torsion}) + \sum_{i=1}^{N} \sum_{j<i}^{N} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}} \right) + \sum_{i=1}^{N} \sum_{j<i}^{N} \left(\frac{q_i q_j}{\varepsilon r_{ij}} \right)
\]
Target Platform and Tools

- **XtremeData XD1000 Development system:**
 - Single AMD Opteron™
 - Altera Stratix II FPGA (Opteron socket)
 - HyperTransport™ bus provides 1.6GB/s between FPGA and system hardware
 - 4GB of onboard DDR SDRAM at 5.4GB/s available to FPGA

- **ImpulseC CoDeveloper Suite**
 - Provides C-to-VHDL or Verilog capability
 - Performance estimation of hardware implementation
 - Support for a wide range of target platforms including XtremeData system
 - Reusable modules
 - Single and double precision floating-point support
Estimating Performance

- Estimated hardware runtime using StageMaster Explorer:
 - Ported LAMMPS function requires 364 clock cycles to compute forces on one atom
 - FPGA clock rate of 100Mhz \rightarrow 2.7x speedup for the entire application
 - Clock rate limited by floating point libraries
 - 114ms to compute 1 timestep 32K atoms \rightarrow 11.5x speedup for core algorithm

- Communication bandwidth analysis
 - 5,120,000 double precision floating-point values needed every second \rightarrow Equates to 40.96 MB/s
 - Theoretical throughput of XtremeData architecture is 800MB/s
Measured Hardware Results

- 164ms mean for 64K atoms (2 timesteps)
- 16x increase for algorithm or 2.77x application speedup*
- Max theoretical obtainable speedup → 3.1x

* Based on current implementation
Conclusions & Future Work

Conclusions

- Almost 3x application speedup
- Removed computational load from host system and internalized portions of communication
- Flexible solution, not locked to specific hardware or software
- Compatible with legacy LAMMPS code
- No HDL coding - allowing non-HDL-experts to leverage RC platforms for Application Acceleration

Future Work

- Streaming and pipelining
- Performance comparison with similar platforms such as the DRC DS1000
Questions?