
Reconfigurable Fault Tolerance (RFT) Reconfigurable Fault Tolerance (RFT)
for FPGAfor FPGA--based Space Computingbased Space Computing

Grzegorz Cieslewski
Adam Jacobs
Chris Conger

Alan D. George
Brandon Kilpatrick

ECE Department, University of Florida

2

OutlineOutline

Introduction
Taxonomy of FT
Current FPGA Techniques
RFT Architecture
Power Consumption
Overhead
Reliability
Conclusions

3

Introduction to RFTIntroduction to RFT
PROBLEM – Research how to take advantage of reconfigurable nature of FPGAs,
enable dynamically-adaptive fault tolerance (FT) in RC systems

Leverage partial reconfiguration (PR) where advantageous

Explore virtual architectures to enable PR and reconfigurable
fault tolerance (RFT)

MOTIVATIONS – Why go with fixed/static FT, when
performance & reliability can be tuned as needed?

Environmentally-aware & adaptive computing is wave of future

Achieving power savings and/or performance improvement,
without sacrificing reliability

CHALLENGES – limitations in concepts and tools,
open-ended problem requires innovative solutions

Conventional FT methods largely based upon radiation-
hardened components and/or fault masking via chip-level TMR

Highly-custom nature of FPGA architectures in different systems
and apps makes defining a common approach to PR difficult

Satellite orbits, passing through
the Van Allen radiation belt

Fault Tolerance

4

Taxonomy of FTTaxonomy of FT
First, let us define various possible modes/methods of providing fault tolerance

Many options beyond conventional methods of spatial TMR
Software FT vs. hardware FT concepts largely similar, differences at implementation level
Radiation-hardening not listed, falls under “prevention” as opposed to detection or correction

Detect
Correct

or
Mask

Fault-Tolerant
HLL (e.g. MPI)

FT-HLL

Concurrent Error
Detection

CED

Self-Checking
Pairs

SCP

Algorithm-Based
Fault-Tolerance

ABFT

Error Correction
Codes

ECC
N-Version

Programming

NVP

Byzantine
Resilience

BR

Checkpointing
& Roll-back

CR

Software-Implemented
Fault Tolerance

SIFT
N-Modular

Redundancy

NMR
Temporal and spatial

variants possible
for many techniques

5

Current FPGACurrent FPGA--Based FT TechniquesBased FT Techniques
Current FT techniques

Scrubbing
Configuration memory is periodically refreshed to prohibit
error accumulation over time

External Replication
Use of multiple devices – three or more FPGAs connected
to external radiation-hardened voter

Internal replication of whole design
Replicate user module internally on FPGA

Can use internal or external voter
XTMR
BYU EDIF Tools

Hybrid Replication
Uses both internal and external replication techniques

Appropriate solution depends upon many factors
Expected operating conditions

Usually worst-case scenario taken into account
Performance requirements

Placing multiple user modules on same FPGA can
decrease overall performance

Power requirements
Using multiple FPGAs can significantly increase power
consumption of whole design

Application characteristics
Real-time requirements
Uptime requirements

Hardware TMR with scrubbing

Hybrid architecture

6

Possible FT Modes for RFT Components Possible FT Modes for RFT Components
Coarse-Level Replication

Self-Checking Pair (SCP)
Two identical components working in tandem
Errors can be detected but recovery has to be taken
at a higher level (CPU)

Triple-Modular Redundancy (TMR)
Three identical components processing identical data
Recovery can be accomplished by majority voting

Algorithm-Based Fault Tolerance (ABFT)
Suitable for certain linear algebra operations and
algorithms that can be expressed in using those
operations
Augments matrices with extra rows or columns
containing weighted checksums
Checksums are preserved through the linear
operations

Error-Correcting Codes (ECC)
Suitable for buses and memory components
Employ extra redundant bits to provide error detection
and correction

FT-HLL through source-to-source translation
Designed to provide FT for software running on CPUs
Transforms high-level language code into fault-tolerant
version by reordering and replicating code fragments
Platform- and compiler independent

Matrix C

Column Checksum

Matrix A

Column Checksum

Matrix B

7

Virtual Architecture for RFTVirtual Architecture for RFT
Novel concept of adaptable
component-level protection (ACP)
Common components within VA:

Multiple Reconfigurable Regions
Largely module/design-independent

Error Status Register (ESR) for system-level error tracking/handling
Synchronization controller, for state saving and restoration
Configuration controller, two options:

Internal configuration through ICAP
External configuration controller

Benefits of internal protection:
Early error detection and handling = faster recovery
Redundancy can be changed into parallelism
Redundancy/parallelism can be traded for power
PR can be leveraged to provide uninterrupted
operation of non-failed components

Challenges of internal protection:
Difficult to eliminate single points of failure, may
still need higher-level (external) detection and handling
Stronger possibility of fault/error going unnoticed
Single-event functional interrupts (SEFI) are concern

A BB

2× parallel, SCP

A

no parallel, TMR

BA DC

4× parallel, single

B
L
A
N
K

B
L
A
N
K

no parallel, SCP“sockets” for modules

VA concept diagram

FPGA

8

RFT ArchitectureRFT Architecture
Partial Reconfiguration (PR) enables
system flexibility

Ability to move Partial Reconfiguration
Modules (PRM) around to different Partial
Reconfiguration Regions (PRR)
Ability to modify level of fault-tolerance in
a PRM
Ability to add multiple PRMs to increase
fault tolerance through replication

Two Possible Approaches
Create multiple PRMs for a given function representing different levels of fault tolerance

Swap entire module when changing protection levels
No protection, SCP, TMR

Create a single PRM and use multiple copies to add fault tolerance
An additional voter module is used to compare outputs between modules

Explicit State Saving
Module designer adds functionality to record and update all state variables

Reconfiguration Control Register (RCR) instructs modules to save any data needed to restore state
RCR also interfaces with system’s Configuration Controller
Allows continuous operation while changing a PRM fault-tolerance level

Configuration controller can store multiple module states off-chip
Controller is a main component of a traditional Partial Reconfiguration framework

State Buffer
(BlockRAM)

Saving
State

Machine

State Buffer
(BlockRAM)

Restoring
State

Machine

Reconfig.
Control
Register

M
od

ul
e

In
te

rc
on

ne
ct

Partial
Reconfiguration

Module #2

St
at

e
C

trl
.

Partial
Reconfiguration

Module #1

S
ta

te
 C

trl
.

Static
Region

9

BitstreamBitstream RelocationRelocation
Bitstream relocation

Changing frame addresses and bitstream composition to move
(or replicate) physical location of a module on chip
Relocation can only be performed with partial bitstreams
Advantages

Increases flexibility in time-multiplexing FPGA resources
Reduce bitstream storage requirements
Migration of bitstream to other FPGAs
Ability to move modules away from faults

Results
Bitstream parser written in C
Currently executed off-line on workstation
Next being ported to embedded
PPC/Microblaze or host processor

FPGA

10

0

0.5

1

1.5

2

2.5

3

3.5

Non‐P R 1 P RR 4 P RR

R
at
io
 t
o
 N
o
n
‐P
R

S lice

BRAM

DS P

Overhead of PROverhead of PR
Illustrate effect of breaking same design up into
different number of PRRs
Generally speaking, required resources increase
when going from non-PR to PR

Slices increase ~200% with PR
BRAMs increase ~150% with PR
DSPs increase ~25% with PR

Take-away points
Largest price paid by making PR, period
Decomposing PR design into multiple PRRs comes
at much less significant cost than non-PR vs. PR
From FT perspective, physical isolation decreases
chances of single fault affecting multiple modules
From general PR perspective, more/smaller regions
equate to lower reconfiguration overhead

Non‐PR 1 PRR 4 PRR

Slice Registers 11556 43120 45344

Slice LUTs 10196 86240 90688

Slices 3657 10780 11310

BRAMs 23 60 58

DSPs 48 60 58

Single PRM

Multiple PRMs

Situation will vary by
app… these results
believed to be close

to worst-case

11

Power / Overhead AnalysisPower / Overhead Analysis

System‐on‐Chip (V4FX20)
Co‐Processor
(V5SX95)

None SCP TMR MAX None SCP TMR

6886

6564

13

9

3229021904113178444

8017 21563

16

11033

39

12 44

78

88

32285

117

132DSPs 3 6 176

MAX

Registers 3750 5325 43077

LUTs 3528 5059 42642

BRAMs 7 10 156

Resource Utilization
SoC – ~2.3× resource requirement for MAX over None
Co-processor – ~3.8× resource requirement for MAX

Power consumption
SoC – higher FT increases power 10-30%
Co-processor – higher FT increases power 10-50%

Max case uses all four slots of RFT VA
e.g. two parallel instances of SCP, 4-way parallel operation
“Mode” not relevant to power consumption, simply depends
upon how many slots are populated & active

System-on-Chip Power Usage (V4)

0

0.5

1

1.5

2

2.5

NFT SCP TMR MAX
FT Mode

P
ow

er
 (W

)

Co-Processor Power Usage (V5)

0

1

2

3

4

5

6

7

NFT SCP TMR MAX
FT Mode

P
ow

er
 (W

)

Using spatial TMR & SCP,
assuming 25% activity rate

12

Analytical Reliability AnalysisAnalytical Reliability Analysis
Analytical reliability analysis can help estimate fault
susceptibility of proposed designs

Most important parameters are “upset rates”, or lambdas
(λ) for each component of RFT; can be approximated
based upon respective components resource utilization
Overall system reliability can be expressed as a product of
component reliabilities
Component-level reliability expression may change
depending upon current mode of fault tolerance
Currently, static part of design is not protected by any FT
technique

MTTF is a one of important reliability metrics
Preliminary results show that possible to significantly
increase MTTF using component-level protection in RFT
SCP is more susceptible to upsets and functional
interrupts but allows for better error detection than case
without FT

[]mtntntnt
ECC

bitbitbitcodec eneeetR ⋅⋅−⋅⋅−−⋅⋅−⋅− ⋅−+⋅= λλλλ)1()(

tt
SCP eetR vote ⋅−⋅− ⋅= mod2)(λλ

)23()(modmod 32 ttt
TMR eeetR vote ⋅−⋅−⋅− −⋅= λλλ

t
BASE etR ⋅−= mod)(λ

∏=
i

ioverall tRtR)()(∫
∞

=
0

)()(tdtRMTTF overall

Ex
am

pl
e

Ex
pr

es
si

on
s

MTTF for co-processor architecture

MTTF for SoC architecture

MTTF for System-on-Chip

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 3 4 5 6 7 8 9 10

Upset rate (upsets/day)

M
TT

F
(d

ay
s)

NFT
SCP
TMR

MTTF for co-processor

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10
Upset rate (upsets/day)

M
TT

F
(d

ay
s)

NFT
SCP
TMR

< 10% of design is
static, resulting in

significant variation
in overall reliability

> 50% of design is
static; however,

still achieves ~50%
increase in reliability vs.

completely non-FT

13

Conclusions and Future WorkConclusions and Future Work
Fault-tolerant computing for space should be more
versatile and adaptive than merely RadHard & spatial TMR

Fixed, worst-case designs are extremely limiting
Higher power consumption
Large area overhead

Instead, variety of techniques from FT taxonomy can be employed
SCP, ABFT, ECC, etc. can reduce required overhead while maintaining
reliability

Adaptive systems (via RFT) can react to environmental changes

Future Work
Extend and refine concept of RFT
Develop proposed RFT architectures
Extend analytical reliability analysis of proposed RFT architectures
Verify and augment analytical reliability analysis using fault injection

14

This research was made possible by
NSF I/UCRC Program (Center Grant EEC-0642422)
CHREC members (31 industry & govt. partners)
Honeywell (prime contractor for NASA’s DM)
Xilinx (donated tools)

Questions?

AcknowledgementsAcknowledgements

Please visit CHREC Booth for general info on
CHREC mission, projects, schools, and members

Please visit CHREC Booth for general info on
CHREC mission, projects, schools, and members

	Reconfigurable Fault Tolerance (RFT) for FPGA-based Space Computing
	Outline
	Introduction to RFT
	Taxonomy of FT
	Current FPGA-Based FT Techniques
	Possible FT Modes for RFT Components
	Virtual Architecture for RFT
	RFT Architecture
	Bitstream Relocation
	Overhead of PR
	Power / Overhead Analysis
	Analytical Reliability Analysis
	Conclusions and Future Work

