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Abstract 
Previously we have proposed an approach to 

meet the certification requirements for the highest 
design assurance levels for complex safety-critical 
hardware in avionics. We named this the 
Overlapped Layered Modular Methodology 
(OLMM), which involved the use of assertions for 
both Formal Verification (FV) and simulation-
based verification. 

One of the biggest obstacles in using assertions 
for functional design verification is the essence of 
asserting design functionality. To precisely specify 
the functionality of the design and capture it fully in 
a formal yet understandable expression, that is also 
simple enough to be computable in a formal proof 
calculation. In addition to this, and maybe even 
more important within the area of complex safety-
critical design, to achieve confidence that these 
goals have been met.  

To support functional design verification with 
assertions using a methodology such as the OLMM 
we propose the use of UML modeling with 
functional test trees to confine verification efforts to 
specific functions and to direct the assertion capture 
process.  We believe that using this structured 
process to formally specify design functionality will 
contribute to a higher confidence and visibility of 
verification means and results of complex designs, 
which in turn leads to higher design assurance. 

Introduction 
The certification guidelines RTCA/DO-254 

(DO-254) [1], requires additional verification 
efforts for the highest design assurance levels (A 
and B) to assure that complex electronic hardware 
designs behave as intended. Since DO-254 was 
accepted the avionics industry has struggled with 
interpreting these guidelines and developing 

processes to cope with this standard and the 
additional verification methods suggested.  

In previous studies we formulated a DO-254 
compliant design assurance strategy for complex 
level A and B hardware designs. As mentioned 
above we called this the Overlapped Layered 
Modular Methodology (OLMM) [2]. The OLMM 
involved the use of formal functional specification 
with PSL1 assertions in addition to traditional HDL 
test bench simulation. With the use of assertions 
more expressive and efficient means of describing 
test cases was made possible and it also enabled the 
use of Formal Verification (FV) for in-depth proof 
calculation. 

The OLMM was also evaluated in a technical 
demonstrator [3], a design highly applicable for use 
in avionics, bridging the widely used ARINC 429 
bus interface. This evaluation was made with a 
variety of verification tools and techniques 
available on the market. In this study the OLMM 
proved to be purposeful and the experience gained 
was very constructive for the continuing 
development and improvement of a DO-254 
compliant process. 

Since this evaluation was made (in 2006) a 
couple of interesting things have happened on the 
market. As there has been a growing interest from 
the avionics industry in advanced verification 
methods and certifiable circuits the tool vendors 
and semiconductor manufacturers themselves have 
taken an interest in the industry’s struggle with 
compliance to DO-254 [5] [6] [7]. We have 
therefore seen an increased flow of means and 
methods to fulfill certification objectives. 

Another development is that formal assertions 
have during the last couple of years become widely 
used in HDL verification, and also within the 
avionics industry and the area of safety-critical 
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design. However, even if our experience shows that 
the use of formal specification and verification of 
design functionality is of great use there are some 
fundamental shortcomings with this approach that 
needs to be addressed to assure a well-organized 
implementation and to increase the value of results 
acquired with using assertions.  

Our previous experience using formal 
specification/verification has shown that a large 
amount of assertions makes it hard to reason about 
the functional coverage obtained. High assertion 
density only quantifies a value of coverage of the 
functionality specified, not directly relating to the 
actual functionality being verified.  Moreover, a 
thing that is often overlooked when using assertions 
for FV is that writing correct and complete 
properties is the hardest part of obtaining a proof of 
correctness (or a constructive counterproof). 
Although this observation is especially pronounced 
in formal verification it also applies to assertion 
simulation. 

With an assertion density reaching a couple of 
hundreds (which is plausible for a complex design) 
there is a likelihood of having requirements that do 
not fulfill their purpose – to give additional 
confidence of the designs correctness. Assertions 
might even be misleading as they may give false 
confidence, and draw attention from the problem at 
hand - to assure that the monitored functionality is 
behaving correctly, or not incorrectly. Misleading 
assertions can be due to a multitude of reasons: 
incorrect and incomplete requirements, incorrectly 
specified functionality, erroneous properties and 
incorrect assumptions on the design intent just to 
give a few examples.  

The mere use of assertions for functional 
design verification does thereby not automatically 
provide convincing evidence that the required 
functionality is fulfilled without being validated 
against the functional design requirements and 
without being associated and analyzed within its 
context of the overall functionality. 

Managing Complexity 
With gate counts in designs growing steadily, 

incorporating larger input/output spaces and 
internal state holding elements Programmable 
Logic Designs (PLDs) are getting harder to test 

exhaustively within a foreseeable amount of time, 
which is what defines a complex design2.  

Even if the civil avionics domain is known to 
be cautious and mostly relies on proven concepts 
and hardly ever strive for making innovative 
designs steps that would jeopardize the overall 
safety objectives it still has to handle this increasing 
complexity and what many refer to as the increasing 
design-verification gap. The avionics domain 
therefore have a progressive view on verification 
and embrace new techniques, but at the same time 
use careful planning in assuring that the sought 
verification goals are met. 

Discussions held within the verification 
community (not necessarily within the avionics 
domain) are suggesting that the solution to the 
increasing complexity of designs may even lie in 
the other end - in making better designs. To spend 
verification efforts where it helps designers create 
better designs from the start instead of hunting 
down the mistakes they make. This means for 
instance to focus on requirements capture and 
validation, maintaining good code quality by the 
use of coding rules and guidelines with a possible 
set of automatic code checks to see to that these 
coding rules are followed, maintaining good design 
documentation that captures the current design 
functionality during development to enable 
supportive verification, use of assertions to give 
instant feed-back to engineering to see that the 
design intent is followed and to perform regression 
testing when new requirements or a new design 
revision has been issued. Requirements 
capture/validation, design and verification 
processes can in other words be made in close 
relationship with each other. Synergy should be 
strived for while still maintaining implementation 
independent validation and verification. 

Only maintaining a good quality of design is 
however not sufficient for safety-critical (DAL A 
and B) avionics hardware designs as certification 
compliance to DO-254 needs to approve certain 
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verification coverage and full traceability of results. 
For DAL A and B designs ideally all permutations 
and combinations of input/outputs, internal state 
combinations and functions should be tested. This 
means that as complex designs per definition cannot 
be tested exhaustively under a foreseeable amount 
of time additional design assurance strategies are 
needed.   

Advanced Verification Strategies  
DO-254 proposes among other solutions a 

number of advanced verification strategies, namely 
Safety Specific Analysis (SSA) that limits the tests 
performed to a subset of the input/out space, 
Elemental Analysis (EA) where the functionality is 
broken down into more manageable sub parts, and 
Formal Methods (FM) where formal proof calculus 
is used to automate the verification to a higher 
degree. 

Apart from these verification methods there 
are many other means of verification available on 
the market to create advanced test cases and raise 
the abstraction level of verification. As example 
using simulation with assertions (that is the basis of 
the OLMM), using high-level coding languages and 
base libraries to create test benches, and constrained 
random stimulation just to name a few options. As 
mentioned above, especially the use of formal 
assertions to monitor design behavior during 
simulation has in recent years become more 
common in verification.  

It needs to be pointed out that at the same time 
as you would like to raise the abstraction level of 
verification when creating test benches and when 
making test cases through the use of more 
expressive languages, hierarchical test architectures 
and by the use of more automated processes the 
focal point still has to be on the low-level design 
function being verified. Tests still have to be built 
bottom-up with the end functionality in mind, i.e. 
with signals behaving as intended, in accordance 
with the low-level hardware requirements.  

In addition to the above verification methods 
there are a variety of coverage measures that can 
provide evidence that diverse aspects of the design 
are triggered during verification. Examples of such 
are code-coverage (line, conditional, expression, 
block), finite state-machine (transition, state), 

transaction-based and functional coverage metrics. 
All these metrics can be used to reason about the 
completeness of simulation based verification 
approaches. Although, when combined with FV 
where the results gained are either 
proofs/counterproofs of properties, or partial proofs 
of properties there is a mismatch in how to weigh 
these metrics against each other. The solution to 
this dilemma might be to look at the problem from 
the other side (as was previous suggested for the 
design-verification gap), to use a robust functional 
verification strategy and planning that assures that 
the coverage measures obtained are sufficient to 
demonstrate the designs correctness. 

Functional Requirements Capture 
Regardless if FV or assertion simulation is 

applied to the design under test the functional 
requirements on the design have to be formalized 
using a restrictive, unambiguous syntax. To support 
these activities the requirements as well as design 
documentation have to be described in detail to 
enable the verification team to work independently 
in creating formal properties.  

As functional requirements are captured using 
a natural language such as English that do not obey 
to the strict rules as formal languages (PSL and 
SVA3 for example) requirements easily leaves out 
information for the validation and verification 
engineer’s interpretation. Because of this, 
translation between these two languages is needed, 
which is a potential source of errors and 
misinterpretations. By using formalized wording 
and a set of rules to capture functional requirements 
and their conditions might however make this 
translation easier by eliminating the most common 
mistakes.  

It is however hard, or even impossible to write 
fully covering functional requirements for a 
complex design as it means describing the whole 
design functionality deterministically. This is not 
even possible using a formal language within a 
reasonable amount of time, and using a natural 
language this would mean a vast amount of 
requirements that would take ages to validate and 
verify. We thereby have to assure that the validation 
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made on the existing set of requirements assures 
that the complete design intent is captured.  

Formal Specification 
Formal properties are built-up by discrete 

sequences of events called Sequential Extended 
Regular Expressions (SEREs) that may be declared 
within variables to hierarchically create large 
functional expressions. Together with temporal 
operators these SEREs describe the events that are 
asserted on the design during verification.  

Properties may also be constructed using a left-
hand side (LHS) argument defining the 
preconditions under which the right-hand side 
(RHS) argument must hold. The LHS property 
arguments may also be used for functional coverage 
measures and constraining design behavior during 
FV. Both the LHS and RHS of the property 
argument are either constructed using the SEREs 
described above or with logical expressions.  

When writing formal properties there are some 
things to consider. First of all the intended 
verification strategy has to be kept in mind as the 
way in which the properties can be written varies 
depending on it. If formal verification is intended, 
then the properties have to be made simple enough 
for the proving engine to be able to reach a 
conclusive result. On the other hand, if simulation is 
the verification strategy of choice, then the 
properties have to be limited to a subset of the 
formal language used to be able to be asserted by 
the simulation tool. It should at the same time be 
pointed out that the properties written for 
simulation may be re-used for FV, given that the 
tools used supports the same language constructs 
used (workarounds possible though) and that the 
property is simple enough (which is not always the 
case). You also have to bear in mind that different 
kinds of properties are suitable for different kinds of 
verification strategies. As example, a property 
checking that an event ‘x’ shall never occur can 
only give a proof of correctness either when 
exhaustively simulated (which is not possible with a 
complex design) or proven formally. 

As there are differences between the properties 
written for the purpose of being simulated, and 
those that are to be formally proven it is suggested 
to keep these separate to each other. It is also 

suggested to write properties hierarchically by reuse 
of defined sequences of events may also eases the 
complexity as it allows the proofs to be calculated 
on the lowest possible functional block level. To be 
able to build properties hierarchical the SEREs can 
be declared as variables and combined into more 
complex sequences of events. In doing so the 
properties written also become more readable and 
more easily debugged as events are directly coupled 
with its respective function. For resuse of code and 
to make further use of these declared functions it is 
also suggested to parameterize these SEREs so that 
different functions can take use of these sequences. 
These sequences can thereafter be made available 
for global use throughout the design in reusable 
libraries.  

As mentioned above, SEREs may be needed to 
constrain design behavior for formal proof-
calculation. This way the input-space of the 
functional design block being formally verified is 
limited, which reduces the complexity of the proof. 
Intuitively, properties defined for functional blocks 
on the border of the PLD interfacing external inputs 
are often needed to be constrained so that the 
formal tool used can deliver constructive results. If 
the properties applied in FV are not constrained 
enough the proofs or counterproofs obtained from 
the formal tool are counterproductive and does not 
give additional value to verification. On the other 
hand, if the properties are over-constrained this 
means that important implementation aspects may 
be overlooked and verification engineers mislead to 
believe that complete proofs of correctness have 
been achieved. Proofs calculated under these false 
assumptions of course become of lessened value 
and may even have severe consequences. 
Constraining design functionality is therefore an 
important aspect of FV that has to be planned 
carefully and incorporated into review process. 
Another aspect of constraining design functionality 
is that to be able to formalize  requirements the 
conditions for these to hold are needed to be 
defined in the requirements so that its completeness 
can be validated. The constrained properties are 
also suggested to be kept separate to unconstrained 
properties so that the proofs calculated are made 
given the right preconditions, but also to ease the 
workload of proof calculation, debugging and 
analyzing results as well as for configuration 
management reasons. 



It is thereby imminent that an equally, or more, 
strict procedure in writing formal properties than is 
used for HDL coding is needed. This involves the 
use of clear and precise coding rules that are linked 
to the way requirements themselves are captured. 

Functional Modeling 
To support the functional requirements 

capture/validation and the specification of formal 
properties functional modeling in the Unified 
Modeling Language (UML) can be used to 
graphically visualize the design intent. As described 
in the UML reference manual [9], models can be 
used for (among other purposes):  

• “To capture and to precisely state 
requirements and domain knowledge so 
that all stakeholders may understand and 
agree on them.” 

• “To think about the design of the system.” 

• “To master complex systems.” 

Bridging the gap of what is required of the 
design (non-formally and formally), and what the 
actual functionality is within the same environment 
enables a better visibility of how all the process 
activities correlate and it thereby assists in assuring 
that all vital functions are covered, that the 
formalized behavior of the design is correctly 
interpreted and that assumptions made on the 
design behavior is kept to a minimum. This is 
especially important considering that with 
independent verification (as is needed for level A 
and B designs) comes the disadvantage of insight 
into the implemented functionality. Validation and 
verification engineers might therefore be unaware 
of what they are missing due to lack of information, 
documentation and detailed knowledge of the 
design implementation. 

Functional Test Plan 
By making functional test trees of the design 

that incorporate functional requirements the 
correctness of requirements, design intent, formal 
properties and verification strategies can all be 
reviewed in relation to each other, which contribute 
to the quality of all processes during development.  

Modern modeling tools today facilitate plug-
ins to enable linking to the common requirements 
capture environment used within the avionics 
market, i.e. DOORS. With such features the 
functional requirements captured can be included 
within the model and updated automatically when 
new baselines of requirements are released. This of 
course supports the iterative requirements capture 
process in relation to the design and validation 
processes and is essential for configuration 
management of hardware design items. 

Functional test trees make the planning of 
verification strategies explicit and facilitate the 
assigning of appropriate verification strategies to 
individual functionalities of the design. As is 
common procedure for complex HDL designs to 
break-up the functionality into functional blocks, so 
can the verification strategy planning. This 
verification scheme is of course something that can 
be revised during the verification process as it is as 
much gain for planning, as it is for documentation 
of the overall verification results.  

Via building the functional test trees 
hierarchical with a block-level on the very top 
representing the main functions of the design the 
functionality can be broken-up hierarchically into 
more manageable subparts (compare with 
Elemental Analysis verification proposed by DO-
254). At the top-level view the verification strategy 
planning can be outlined with assigning suitable 
verification strategies to the individual functional 
blocks.  

 

Figure 1 Schematic Block-level functional 
verification plan. 



In Figure 1 above a generalized schematic 
example of a functional verification plan is 
outlined.  The block level functions (A-D) within 
the model all represent different functions within 
the design. They might not be totally independent 
as the figure might be leading you to think, but 
from a verification planning point of view it is 
possible to treat these functions differently. For 
example, function A above might a simple function 
if treated on its own (not considering the systems it 
is residing in). Simulation methods might here be 
sufficient to exhaustively test this function. 
Function B and C on the other hand, have to be 
verified together and as C is depending on input 
coming from B. It is thereby possible that the 
functions within C are hard to stimulate from 
external inputs. With guidance of functional 
coverage it might therefore be needed to target 
those events that are specifically hard to reach with 
FV. Furthermore, let’s say that function D is a 
complex function that cannot be exhaustively 
verified using only a traditional test bench. For this 
function a multitude of verification strategies might 
be needed to achieve coverage goals.   

As mentioned above there is a variety of 
verification approaches available on the market and 
choosing an appropriate strategy is not always the 
easiest of tasks. The most suitable choice for 
verification depends, among other things, on the 
type of function being verified, the complexity of 
the design, the possibility to stimulate the particular 
function from design inputs, and the way the 
function has been implemented (which is unknown 
to an independent verification engineer).  

As example, use of FV might be needed to 
reach the most hard to reach corner-cases, or to give 
additional confidence to aspects of the design of 
particular safety-critical impact. By using functional 
test trees for verification planning these verification 
“hot-spots” can be identified and targeted. The use 
of FV itself also involves many other alternatives: 
the verification engine to be used to calculate the 
formal proof, the constraints under which the proofs 
shall be made, and the way the proofs have been 
obtained, i.e. automatically calculated by the tool or 
manually guided. The latter of these, manually 
guided formal proofs also require detailed design 
knowledge, which is not always available to an 
independent verification engineer. In this case a 

functional test tree aids the verification engineer in 
judging the design’s correctness.  

Note that all the verification strategies applied 
to the design have to be placed under configuration 
management to assure that verification results 
obtained are traceable and configuration/version 
controlled. 

Functional Test Trees 
The block-level functional test plan can then 

be broken-down into more detailed functional test 
trees that give more detailed knowledge of the 
individual functions. The level of detail needed for 
these trees is something that has to be analyzed 
from the start of the verification planning to give 
sufficient information about the elements of the 
design to support the verification strategies used for 
the particular function. 

In Figure 2 below a schematic example of a 
UML functional test tree is given. The example 
contains four states (A, B, C and D) with respective 
events to trigger the state transitions between these 
states. From the starting state, as depicted in the 
UML constraint (1 in Figure 2), from state A, when 
‘a’ occurs with three consecutive ‘b’:s then the 
requirements in state D (2 in Figure 2) shall hold.   

 



 

Figure 2 Schematic view of functional test tree.  

As seen in the example above, requirements 
can be placed into their appropriate context when 
added in functional trees. The requirements can also 
be imported automatically from requirements 
baselines, and the trees might thereby be kept 
updated through the validation process. Which aids 
the requirements capture process, and assist in 
validating the requirements correctness and 
completeness for the intended functionality.  

By specifying the design functionality in a tree 
structure the constraints, i.e. preconditions, under 
which the requirements must hold can be easily 
recognized. When constraining design input for 
formal proofs and random stimulus generation the 
inputs are limited to a subset of the complete input 
space (compare with Safety-Specific Analysis 
proposed by DO-254).  

Note that formal properties can be applied on 
several levels of the design. If sub trees are used to 
describe the functional design and part it into 
manageable parts, possibly for verification 
complexity reasons, the property structure may 
follow the same structure. 

In association to the functional tree structure 
formal properties coverage measures and 
preconditions (LHS) follow the branches of the tree 

and measure the functional coverage in comparison 
with the design intent. Thereby, the functional trees 
can be used for functional coverage planning and 
direct assertion coverage efforts to bring higher 
value to the quantitative assertion density measure. 
In this manner a clearer picture of what 
functionality has, and has not, been captured in 
properties is attained. 

Conclusions 
We have in this paper proposed an outline to a 

verification planning process to be able to draw 
advantage of the various functional verification 
strategies that are out on the market. With this 
structured verification planning process we have 
more possibilities to analyze the design intent, and 
validate functional requirements in their functional 
context as well as to assign appropriate verification 
strategies to functions where they are best suited.   

Without careful functional verification 
planning the best we can accomplish using formal 
properties is to gain a quantitative measure of 
assertion density, and with FV tools try to analyze 
proven and counter-proven properties within its 
functional context. Writing these formal functional 
properties and constraining the verification effort is 
the most difficult aspect of effectively using FV, 
which requisites a careful planning and validation 
process.  

By using a functional verification planning like 
the one proposed here it is also possible to weigh 
and review the functional coverage obtained from 
different verification methods altogether. Thereby, 
the coverage measures from FV may be reviewed in 
relationship to the coverage metrics acquired from 
simulation. 
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