
STRUCTURED ASSERTION DESIGN VERIFICATION FOR COMPLEX
SAFETY-CRITICAL HARDWARE

Kristoffer Karlsson, Contractor
Håkan Forsberg, Saab Avitronics, Jönköping, Sweden

Abstract
Previously we have proposed an approach to

meet the certification requirements for the highest
design assurance levels for complex safety-critical
hardware in avionics. We named this the
Overlapped Layered Modular Methodology
(OLMM), which involved the use of assertions for
both Formal Verification (FV) and simulation-
based verification.

One of the biggest obstacles in using assertions
for functional design verification is the essence of
asserting design functionality. To precisely specify
the functionality of the design and capture it fully in
a formal yet understandable expression, that is also
simple enough to be computable in a formal proof
calculation. In addition to this, and maybe even
more important within the area of complex safety-
critical design, to achieve confidence that these
goals have been met.

To support functional design verification with
assertions using a methodology such as the OLMM
we propose the use of UML modeling with
functional test trees to confine verification efforts to
specific functions and to direct the assertion capture
process. We believe that using this structured
process to formally specify design functionality will
contribute to a higher confidence and visibility of
verification means and results of complex designs,
which in turn leads to higher design assurance.

Introduction
The certification guidelines RTCA/DO-254

(DO-254) [1], requires additional verification
efforts for the highest design assurance levels (A
and B) to assure that complex electronic hardware
designs behave as intended. Since DO-254 was
accepted the avionics industry has struggled with
interpreting these guidelines and developing

processes to cope with this standard and the
additional verification methods suggested.

In previous studies we formulated a DO-254
compliant design assurance strategy for complex
level A and B hardware designs. As mentioned
above we called this the Overlapped Layered
Modular Methodology (OLMM) [2]. The OLMM
involved the use of formal functional specification
with PSL1 assertions in addition to traditional HDL
test bench simulation. With the use of assertions
more expressive and efficient means of describing
test cases was made possible and it also enabled the
use of Formal Verification (FV) for in-depth proof
calculation.

The OLMM was also evaluated in a technical
demonstrator [3], a design highly applicable for use
in avionics, bridging the widely used ARINC 429
bus interface. This evaluation was made with a
variety of verification tools and techniques
available on the market. In this study the OLMM
proved to be purposeful and the experience gained
was very constructive for the continuing
development and improvement of a DO-254
compliant process.

Since this evaluation was made (in 2006) a
couple of interesting things have happened on the
market. As there has been a growing interest from
the avionics industry in advanced verification
methods and certifiable circuits the tool vendors
and semiconductor manufacturers themselves have
taken an interest in the industry’s struggle with
compliance to DO-254 [5] [6] [7]. We have
therefore seen an increased flow of means and
methods to fulfill certification objectives.

Another development is that formal assertions
have during the last couple of years become widely
used in HDL verification, and also within the
avionics industry and the area of safety-critical

1 Property Specification Language [4]

design. However, even if our experience shows that
the use of formal specification and verification of
design functionality is of great use there are some
fundamental shortcomings with this approach that
needs to be addressed to assure a well-organized
implementation and to increase the value of results
acquired with using assertions.

Our previous experience using formal
specification/verification has shown that a large
amount of assertions makes it hard to reason about
the functional coverage obtained. High assertion
density only quantifies a value of coverage of the
functionality specified, not directly relating to the
actual functionality being verified. Moreover, a
thing that is often overlooked when using assertions
for FV is that writing correct and complete
properties is the hardest part of obtaining a proof of
correctness (or a constructive counterproof).
Although this observation is especially pronounced
in formal verification it also applies to assertion
simulation.

With an assertion density reaching a couple of
hundreds (which is plausible for a complex design)
there is a likelihood of having requirements that do
not fulfill their purpose – to give additional
confidence of the designs correctness. Assertions
might even be misleading as they may give false
confidence, and draw attention from the problem at
hand - to assure that the monitored functionality is
behaving correctly, or not incorrectly. Misleading
assertions can be due to a multitude of reasons:
incorrect and incomplete requirements, incorrectly
specified functionality, erroneous properties and
incorrect assumptions on the design intent just to
give a few examples.

The mere use of assertions for functional
design verification does thereby not automatically
provide convincing evidence that the required
functionality is fulfilled without being validated
against the functional design requirements and
without being associated and analyzed within its
context of the overall functionality.

Managing Complexity
With gate counts in designs growing steadily,

incorporating larger input/output spaces and
internal state holding elements Programmable
Logic Designs (PLDs) are getting harder to test

exhaustively within a foreseeable amount of time,
which is what defines a complex design2.

Even if the civil avionics domain is known to
be cautious and mostly relies on proven concepts
and hardly ever strive for making innovative
designs steps that would jeopardize the overall
safety objectives it still has to handle this increasing
complexity and what many refer to as the increasing
design-verification gap. The avionics domain
therefore have a progressive view on verification
and embrace new techniques, but at the same time
use careful planning in assuring that the sought
verification goals are met.

Discussions held within the verification
community (not necessarily within the avionics
domain) are suggesting that the solution to the
increasing complexity of designs may even lie in
the other end - in making better designs. To spend
verification efforts where it helps designers create
better designs from the start instead of hunting
down the mistakes they make. This means for
instance to focus on requirements capture and
validation, maintaining good code quality by the
use of coding rules and guidelines with a possible
set of automatic code checks to see to that these
coding rules are followed, maintaining good design
documentation that captures the current design
functionality during development to enable
supportive verification, use of assertions to give
instant feed-back to engineering to see that the
design intent is followed and to perform regression
testing when new requirements or a new design
revision has been issued. Requirements
capture/validation, design and verification
processes can in other words be made in close
relationship with each other. Synergy should be
strived for while still maintaining implementation
independent validation and verification.

Only maintaining a good quality of design is
however not sufficient for safety-critical (DAL A
and B) avionics hardware designs as certification
compliance to DO-254 needs to approve certain

2 “A hardware item is identified as simple only if a
comprehensive combination of deterministic tests and analyses
appropriate to the design assurance level can ensure correct
functional performance under all foreseeable operating
conditions with no anomalous behavior. When an item cannot
be classified as simple, it should be classified as complex.”
DO-254 [1]

verification coverage and full traceability of results.
For DAL A and B designs ideally all permutations
and combinations of input/outputs, internal state
combinations and functions should be tested. This
means that as complex designs per definition cannot
be tested exhaustively under a foreseeable amount
of time additional design assurance strategies are
needed.

Advanced Verification Strategies
DO-254 proposes among other solutions a

number of advanced verification strategies, namely
Safety Specific Analysis (SSA) that limits the tests
performed to a subset of the input/out space,
Elemental Analysis (EA) where the functionality is
broken down into more manageable sub parts, and
Formal Methods (FM) where formal proof calculus
is used to automate the verification to a higher
degree.

Apart from these verification methods there
are many other means of verification available on
the market to create advanced test cases and raise
the abstraction level of verification. As example
using simulation with assertions (that is the basis of
the OLMM), using high-level coding languages and
base libraries to create test benches, and constrained
random stimulation just to name a few options. As
mentioned above, especially the use of formal
assertions to monitor design behavior during
simulation has in recent years become more
common in verification.

It needs to be pointed out that at the same time
as you would like to raise the abstraction level of
verification when creating test benches and when
making test cases through the use of more
expressive languages, hierarchical test architectures
and by the use of more automated processes the
focal point still has to be on the low-level design
function being verified. Tests still have to be built
bottom-up with the end functionality in mind, i.e.
with signals behaving as intended, in accordance
with the low-level hardware requirements.

In addition to the above verification methods
there are a variety of coverage measures that can
provide evidence that diverse aspects of the design
are triggered during verification. Examples of such
are code-coverage (line, conditional, expression,
block), finite state-machine (transition, state),

transaction-based and functional coverage metrics.
All these metrics can be used to reason about the
completeness of simulation based verification
approaches. Although, when combined with FV
where the results gained are either
proofs/counterproofs of properties, or partial proofs
of properties there is a mismatch in how to weigh
these metrics against each other. The solution to
this dilemma might be to look at the problem from
the other side (as was previous suggested for the
design-verification gap), to use a robust functional
verification strategy and planning that assures that
the coverage measures obtained are sufficient to
demonstrate the designs correctness.

Functional Requirements Capture
Regardless if FV or assertion simulation is

applied to the design under test the functional
requirements on the design have to be formalized
using a restrictive, unambiguous syntax. To support
these activities the requirements as well as design
documentation have to be described in detail to
enable the verification team to work independently
in creating formal properties.

As functional requirements are captured using
a natural language such as English that do not obey
to the strict rules as formal languages (PSL and
SVA3 for example) requirements easily leaves out
information for the validation and verification
engineer’s interpretation. Because of this,
translation between these two languages is needed,
which is a potential source of errors and
misinterpretations. By using formalized wording
and a set of rules to capture functional requirements
and their conditions might however make this
translation easier by eliminating the most common
mistakes.

It is however hard, or even impossible to write
fully covering functional requirements for a
complex design as it means describing the whole
design functionality deterministically. This is not
even possible using a formal language within a
reasonable amount of time, and using a natural
language this would mean a vast amount of
requirements that would take ages to validate and
verify. We thereby have to assure that the validation

3 SystemVerilog Assertions [8]

made on the existing set of requirements assures
that the complete design intent is captured.

Formal Specification
Formal properties are built-up by discrete

sequences of events called Sequential Extended
Regular Expressions (SEREs) that may be declared
within variables to hierarchically create large
functional expressions. Together with temporal
operators these SEREs describe the events that are
asserted on the design during verification.

Properties may also be constructed using a left-
hand side (LHS) argument defining the
preconditions under which the right-hand side
(RHS) argument must hold. The LHS property
arguments may also be used for functional coverage
measures and constraining design behavior during
FV. Both the LHS and RHS of the property
argument are either constructed using the SEREs
described above or with logical expressions.

When writing formal properties there are some
things to consider. First of all the intended
verification strategy has to be kept in mind as the
way in which the properties can be written varies
depending on it. If formal verification is intended,
then the properties have to be made simple enough
for the proving engine to be able to reach a
conclusive result. On the other hand, if simulation is
the verification strategy of choice, then the
properties have to be limited to a subset of the
formal language used to be able to be asserted by
the simulation tool. It should at the same time be
pointed out that the properties written for
simulation may be re-used for FV, given that the
tools used supports the same language constructs
used (workarounds possible though) and that the
property is simple enough (which is not always the
case). You also have to bear in mind that different
kinds of properties are suitable for different kinds of
verification strategies. As example, a property
checking that an event ‘x’ shall never occur can
only give a proof of correctness either when
exhaustively simulated (which is not possible with a
complex design) or proven formally.

As there are differences between the properties
written for the purpose of being simulated, and
those that are to be formally proven it is suggested
to keep these separate to each other. It is also

suggested to write properties hierarchically by reuse
of defined sequences of events may also eases the
complexity as it allows the proofs to be calculated
on the lowest possible functional block level. To be
able to build properties hierarchical the SEREs can
be declared as variables and combined into more
complex sequences of events. In doing so the
properties written also become more readable and
more easily debugged as events are directly coupled
with its respective function. For resuse of code and
to make further use of these declared functions it is
also suggested to parameterize these SEREs so that
different functions can take use of these sequences.
These sequences can thereafter be made available
for global use throughout the design in reusable
libraries.

As mentioned above, SEREs may be needed to
constrain design behavior for formal proof-
calculation. This way the input-space of the
functional design block being formally verified is
limited, which reduces the complexity of the proof.
Intuitively, properties defined for functional blocks
on the border of the PLD interfacing external inputs
are often needed to be constrained so that the
formal tool used can deliver constructive results. If
the properties applied in FV are not constrained
enough the proofs or counterproofs obtained from
the formal tool are counterproductive and does not
give additional value to verification. On the other
hand, if the properties are over-constrained this
means that important implementation aspects may
be overlooked and verification engineers mislead to
believe that complete proofs of correctness have
been achieved. Proofs calculated under these false
assumptions of course become of lessened value
and may even have severe consequences.
Constraining design functionality is therefore an
important aspect of FV that has to be planned
carefully and incorporated into review process.
Another aspect of constraining design functionality
is that to be able to formalize requirements the
conditions for these to hold are needed to be
defined in the requirements so that its completeness
can be validated. The constrained properties are
also suggested to be kept separate to unconstrained
properties so that the proofs calculated are made
given the right preconditions, but also to ease the
workload of proof calculation, debugging and
analyzing results as well as for configuration
management reasons.

It is thereby imminent that an equally, or more,
strict procedure in writing formal properties than is
used for HDL coding is needed. This involves the
use of clear and precise coding rules that are linked
to the way requirements themselves are captured.

Functional Modeling
To support the functional requirements

capture/validation and the specification of formal
properties functional modeling in the Unified
Modeling Language (UML) can be used to
graphically visualize the design intent. As described
in the UML reference manual [9], models can be
used for (among other purposes):

• “To capture and to precisely state
requirements and domain knowledge so
that all stakeholders may understand and
agree on them.”

• “To think about the design of the system.”

• “To master complex systems.”

Bridging the gap of what is required of the
design (non-formally and formally), and what the
actual functionality is within the same environment
enables a better visibility of how all the process
activities correlate and it thereby assists in assuring
that all vital functions are covered, that the
formalized behavior of the design is correctly
interpreted and that assumptions made on the
design behavior is kept to a minimum. This is
especially important considering that with
independent verification (as is needed for level A
and B designs) comes the disadvantage of insight
into the implemented functionality. Validation and
verification engineers might therefore be unaware
of what they are missing due to lack of information,
documentation and detailed knowledge of the
design implementation.

Functional Test Plan
By making functional test trees of the design

that incorporate functional requirements the
correctness of requirements, design intent, formal
properties and verification strategies can all be
reviewed in relation to each other, which contribute
to the quality of all processes during development.

Modern modeling tools today facilitate plug-
ins to enable linking to the common requirements
capture environment used within the avionics
market, i.e. DOORS. With such features the
functional requirements captured can be included
within the model and updated automatically when
new baselines of requirements are released. This of
course supports the iterative requirements capture
process in relation to the design and validation
processes and is essential for configuration
management of hardware design items.

Functional test trees make the planning of
verification strategies explicit and facilitate the
assigning of appropriate verification strategies to
individual functionalities of the design. As is
common procedure for complex HDL designs to
break-up the functionality into functional blocks, so
can the verification strategy planning. This
verification scheme is of course something that can
be revised during the verification process as it is as
much gain for planning, as it is for documentation
of the overall verification results.

Via building the functional test trees
hierarchical with a block-level on the very top
representing the main functions of the design the
functionality can be broken-up hierarchically into
more manageable subparts (compare with
Elemental Analysis verification proposed by DO-
254). At the top-level view the verification strategy
planning can be outlined with assigning suitable
verification strategies to the individual functional
blocks.

Figure 1 Schematic Block-level functional
verification plan.

In Figure 1 above a generalized schematic
example of a functional verification plan is
outlined. The block level functions (A-D) within
the model all represent different functions within
the design. They might not be totally independent
as the figure might be leading you to think, but
from a verification planning point of view it is
possible to treat these functions differently. For
example, function A above might a simple function
if treated on its own (not considering the systems it
is residing in). Simulation methods might here be
sufficient to exhaustively test this function.
Function B and C on the other hand, have to be
verified together and as C is depending on input
coming from B. It is thereby possible that the
functions within C are hard to stimulate from
external inputs. With guidance of functional
coverage it might therefore be needed to target
those events that are specifically hard to reach with
FV. Furthermore, let’s say that function D is a
complex function that cannot be exhaustively
verified using only a traditional test bench. For this
function a multitude of verification strategies might
be needed to achieve coverage goals.

As mentioned above there is a variety of
verification approaches available on the market and
choosing an appropriate strategy is not always the
easiest of tasks. The most suitable choice for
verification depends, among other things, on the
type of function being verified, the complexity of
the design, the possibility to stimulate the particular
function from design inputs, and the way the
function has been implemented (which is unknown
to an independent verification engineer).

As example, use of FV might be needed to
reach the most hard to reach corner-cases, or to give
additional confidence to aspects of the design of
particular safety-critical impact. By using functional
test trees for verification planning these verification
“hot-spots” can be identified and targeted. The use
of FV itself also involves many other alternatives:
the verification engine to be used to calculate the
formal proof, the constraints under which the proofs
shall be made, and the way the proofs have been
obtained, i.e. automatically calculated by the tool or
manually guided. The latter of these, manually
guided formal proofs also require detailed design
knowledge, which is not always available to an
independent verification engineer. In this case a

functional test tree aids the verification engineer in
judging the design’s correctness.

Note that all the verification strategies applied
to the design have to be placed under configuration
management to assure that verification results
obtained are traceable and configuration/version
controlled.

Functional Test Trees
The block-level functional test plan can then

be broken-down into more detailed functional test
trees that give more detailed knowledge of the
individual functions. The level of detail needed for
these trees is something that has to be analyzed
from the start of the verification planning to give
sufficient information about the elements of the
design to support the verification strategies used for
the particular function.

In Figure 2 below a schematic example of a
UML functional test tree is given. The example
contains four states (A, B, C and D) with respective
events to trigger the state transitions between these
states. From the starting state, as depicted in the
UML constraint (1 in Figure 2), from state A, when
‘a’ occurs with three consecutive ‘b’:s then the
requirements in state D (2 in Figure 2) shall hold.

Figure 2 Schematic view of functional test tree.

As seen in the example above, requirements
can be placed into their appropriate context when
added in functional trees. The requirements can also
be imported automatically from requirements
baselines, and the trees might thereby be kept
updated through the validation process. Which aids
the requirements capture process, and assist in
validating the requirements correctness and
completeness for the intended functionality.

By specifying the design functionality in a tree
structure the constraints, i.e. preconditions, under
which the requirements must hold can be easily
recognized. When constraining design input for
formal proofs and random stimulus generation the
inputs are limited to a subset of the complete input
space (compare with Safety-Specific Analysis
proposed by DO-254).

Note that formal properties can be applied on
several levels of the design. If sub trees are used to
describe the functional design and part it into
manageable parts, possibly for verification
complexity reasons, the property structure may
follow the same structure.

In association to the functional tree structure
formal properties coverage measures and
preconditions (LHS) follow the branches of the tree

and measure the functional coverage in comparison
with the design intent. Thereby, the functional trees
can be used for functional coverage planning and
direct assertion coverage efforts to bring higher
value to the quantitative assertion density measure.
In this manner a clearer picture of what
functionality has, and has not, been captured in
properties is attained.

Conclusions
We have in this paper proposed an outline to a

verification planning process to be able to draw
advantage of the various functional verification
strategies that are out on the market. With this
structured verification planning process we have
more possibilities to analyze the design intent, and
validate functional requirements in their functional
context as well as to assign appropriate verification
strategies to functions where they are best suited.

Without careful functional verification
planning the best we can accomplish using formal
properties is to gain a quantitative measure of
assertion density, and with FV tools try to analyze
proven and counter-proven properties within its
functional context. Writing these formal functional
properties and constraining the verification effort is
the most difficult aspect of effectively using FV,
which requisites a careful planning and validation
process.

By using a functional verification planning like
the one proposed here it is also possible to weigh
and review the functional coverage obtained from
different verification methods altogether. Thereby,
the coverage measures from FV may be reviewed in
relationship to the coverage metrics acquired from
simulation.

References
[1] Radio Technical Commission for Aeronautics,
RTCA Special Committee 180, April 2000,
“Design assurance guidance for airborne
electronic hardware,” RTCA, Inc., Washington,
DC, USA.

[2] Karlsson K. and Forsberg H., Oct. 2005,
”Emerging verification methods for complex
hardware in avionics”, 24th Digital Avionics
Systems Conference (DASC).

[3] Karlsson K. and Forsberg H., Oct. 2006,
“Increasing Confidence of Complex Hardware in
Safety-Critical Avionics Using Formal Methods”,
MAPLD 20064.

[4] “IEEE Standard for Property Specification
Language (PSL)”, 2005, IEEE Computer Society
Std. 1850.

[5] Dewey T., “Demystifying DO-254”, Mentor
Graphics Corporation, 2008.

[6] Lange M., Dewey T., “Achieving Quality and
Traceability in FPGA/ASIC Flows for DO-254
Aviation Projects”, IEEEAC Paper #1412, Version
1, Oct. 2007.

[7] Keithan J. P., Landoll D., Marriott P., Logan B.,
“The Use of Advanced Verification Methods to
Address DO-254 Design Assurance”, IEEEAC
Paper #1304, Version 2, Sept. 2007.

[8] “Standard for SystemVerilog - Unified
Hardware Design, Specification, and Verification
Language”, IEC 62530 Ed. 1 (2007-11) (IEEE Std
1800-2005).

[9] “The Unified Modeling Language Reference
Manual”, Rumbaugh J., Jacobson I., Booch G.,
Addison Wesley Longman, Inc., 1999.

E-mail Addresses
kristoffer.ko.karlsson@gmail.com

hakan.forsberg@saabgroup.com

Conference Identification
Military and Aerospace Programmable Logic

Devices (MAPLD) Conference
September 15, 2008

4 Unpublished due to MAPLD conference break, notify
authors of this paper to receive referred document.

