FPGA Verification Accelerator (FVAX)

MAPLD 2008

Authors: Jane Oh and Gary Burke
Affiliation: Jet Propulsion Laboratory, California Institute of Technology
Address: 4800 Oak Grove Drive, Pasadena, CA 91109
Email: Gary.R.Burke@jpl.nasa.gov
 Jane.oh@jpl.nasa.gov
Presentation Outline

• Key Challenge
• Objectives and Goals
• Current verification techniques
• FVAX Approach to verification
• Expected Benefits
• Conclusion
Key Challenges

• The increased complexity of the devices required by today’s and future missions
 – the 32k gate devices used on MER
 – the 2 million gate devices used on MSL
• Verification of complex hardware/software systems for space missions is very time consuming
 – a typical FPGA (e.g. the 32k gate devices used on MER) can take 3 months to verify
• FPGAs are becoming a more critical component of space systems
Objectives

• Faster: Reduce the amount of time required to verify critical FPGAs
• Effectiveness: Improved testing to reduce test escapes
• Improved validation: Increased confidence that the FPGA is correct
Task Goals

• Develop a new technology (FVAX, FPGA-based Verification Accelerator System) to improve verification and validation of FPGAs that
 – Works with any FPGA
 – Has more capability than existing tools
 – Provides a standard FPGA BTE for any Board
 – Speeds up verification/validation process by giving
 • High visibility of FPGA internal signals and nodes
 • Easy user interface
 • Comparison of actual with model
 • Method to step to sequence causing the problem
Typical FPGA Verification

- **Simulation**
 - Extensive HDL test benches
 - Model external world

- **Breadboard**
 - FPGA COTS or Custom Board
 - Re-programmable FPGA preferred
 - Use Bench test Equipment (BTE)

- **System test**
 - Engineering Model (EM) in system
 - Run system with software, external hardware

- **Assembly and Test**
 - Assemble final board and test in system.
Current State of Verification - simulation

• Simulation will get most of the problems
 – Time consuming to cover every case
 – Manual effort to build test plan

• Subtle errors remain due to
 – Errors in test bench
 • Test Bench designer same as FPGA designer
 – External world not modeled correctly
 • Asynchronous effects difficult to model
 – Unexpected interaction with other components
 • Incorrect or ambiguous Interface Description (ICD)
Current State of Verification

- board test

• Board test will get most of remaining problems but difficult to find source of problems

• Lack of probe points inside FPGA
 – Need to bring out internal nodes onto unused pins

• Lack of probe points on board
 – Difficult to probe small parts

• Hard to set up error conditions
 – Error may appear only occasionally
Existing FPGA debug

• Existing methods for probing an FPGA during test exist and are effective

• Chipscope is very useful as a way to probe Xilinx FPGAs
 – Uses embedded code compiled with user code
 – Uses JTAG port

• Silicon Explorer
 – Uses FPGA structure to probe any node
 – Uses JTAG/Probe pins
New Debug Tool

• Works with any FPGA
• Has more capability than existing tools
 – See chart
• Provides a standard FPGA test port and BTE for any Board
• Speeds up debug process by giving
 – High visibility of FPGA nodes
 – Easy user interface
 – Comparison of actual with model
 – Method to step to sequence causing the problem
Using FVAX Technology

- Designer integrates FVAX technology (supplied as an IP) into their designs
- Designer simulates and verifies the FPGA (e.g., ModelSim)
- Designer tests and validates the breadboard design using FVAX technology (i.e., FVAX board and FVAX support software)
FVAX System Architecture

Verification Target (FPGA to be verified - provided by customer)

Verification Target IPs (provided by this task, included on Verification Target)

Verification support software (simulation/analysis software to support verification)

Verification FPGA (custom-made FPGA used to facilitate/accelerate verification of target)
Expected Benefits

<table>
<thead>
<tr>
<th></th>
<th>Silicon explorer</th>
<th>Chipscope</th>
<th>Our Test FPGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>General purpose</td>
<td>No: Actel FPGA only</td>
<td>No: Xilinx FPGA only</td>
<td>Any FPGA/ASIC</td>
</tr>
<tr>
<td>Monitor internal nodes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>At speed monitoring</td>
<td>Yes: but problem with signal integrity</td>
<td>Yes: but limited sample size</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of signals monitored</td>
<td>2-4 only (depends on device type)</td>
<td>Limited by internal memory Typical 32 out of 32</td>
<td>limited by bus bandwidth; typically 32 out of 1024</td>
</tr>
<tr>
<td>Logic analyzer display</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Comparison against model</td>
<td>No</td>
<td>No</td>
<td>Yes: by comparing against the model, problems can be found before they have a major effect on the I/Os</td>
</tr>
<tr>
<td>Static Stimulus</td>
<td>No</td>
<td>Yes</td>
<td>Yes: large number of static stimulus possible</td>
</tr>
<tr>
<td>Dynamic stimulus</td>
<td>No</td>
<td>No</td>
<td>Yes: full pattern generator included. This allows easy setup of conditions leading to problem.</td>
</tr>
<tr>
<td>Internal FPGA resources needed</td>
<td>No</td>
<td>Yes: large amount of on-chip storage needed to store results</td>
<td>Yes: but no onchip storage needed, and on-chip logic is a very small overhead.</td>
</tr>
</tbody>
</table>
Conclusion

• Is Verification Acceleration Possible?
 – Increasing the visibility of the internal nodes of the FPGA results in much faster debug time
 – Forcing internal signals directly allows a problem condition to be setup very quickly

• Is this all?
 – No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.