Using a FLASH Based FPGA in a Miniaturized Motion Control Chip

Sandi Habinc(1), Jonas Ekergarn(1), Kristoffer Glembo(1)
Dr Enrique Lamoureux(2), Dr Fredrik Bruhn(2)

(1) Aeroflex Gaisler
Kungsgatan 12, SE-411 19 Göteborg, Sweden
Email: sandi@gaisler.com

(2) ÅAC Microtec (Ångström Aerospace Corporation)
Dag Hammarskjölds väg 54B, SE-751 83 Uppsala, Sweden
Email: frbr@aacmicrotec.com

MAPLD 2009, Washington, 1st September 2009
Introduction

The Motion Control Chip (MCC) is a freestanding component that can control up to three brushed motors or one brush-less motor in torque, position or velocity mode. Approximated dimensions (L,W,H) 75mm x 45mm x 10mm Approximated weight 80g

Potential applications are:
- Exoskeletons
- Robotic arms
- Drills
- Wheels and masts on rovers
- Solar panel positioning, etc.

All digital logic in an FPGA
Motion Control Chip – block diagram
Miniaturization technology

The MCC design is based on ÅAC’s proprietary packaging technology that offers high-resolution thin-film metallization on various substrates for advanced 3D-stacking.

The packaging technology allows advanced 3D-multi-chip-modules (3D-MCM) that can incorporate various kinds of naked die.

An example of previous designs is the RTU-100-CS, which is 34 mm x 34 mm and less than 2 mm in height, weighing 3 grams.

Remote Terminal Unit (RTU-100-CS)
Programmability

- The MCC concept is to provide a miniaturized system that is also programmable:
 - Main digital logic implemented in re-programmable Flash based FPGA (e.g. processor and interfaces)
 - Software stored in re-programmable Flash PROM
- Actel RT3PE3000L FPGA:
 - 3,000,000 System Gates
 - 75,264 Logic Tiles
 - 504 kbits RAM
 - 1 kbits FlashROM (user accessible)
- RT ProASIC3 devices use same silicon and process as commercial UMC 0.13 µm ProASIC3EL family
- RT3PE3000L uses the same silicon as the A3PE3000L
Motion Control Chip – FPGA

- IEEE 754 FPU
- LEON3FT SPARC V8
- Mul & Div
- 4kB D-cache
- 8kB I-cache
- AMBA AHB
- Memory Controller
- AHB/APB Bridge
- AMBA AHB
- AMBA APB
- Debug Support Unit
- JTAG Debug Link
- 2x SpaceWire Links RMAP
- CAN 2.0
- 2 x LVTTL
- JTAG Debug Link
- 4x SPI
- PWM
- I/O Port
- SPI
- Waveform
- PROM
- SRAM
- 8kB D-cache
- 4kB I-cache
- 2x UART
- Timers
- I/O Port
LEON3 SPARC V8 Processor

- IEEE-1754 SPARC V8 compliant, 32-bit processor
- 7-stage pipeline, multi-processor support
- Separate multi-set caches with LRU/LRR/RND
- On-chip debug support unit with trace buffer
- Highly configurable:
 - Cache size 1-256 kByte, 1-4 sets, LRU/LRR/RND
 - Hardware Multiply/Divide/MAC options
 - MMU, FPU high-performance or small-size
 - Pipeline optimization for specific target technologies
 - Fault tolerance optimization for specific target technologies
- 400 MHz on ASIC (130 nm, 400 MIPS, 400 MFLOPS, 25 kgates)
- 20-30 MHz on Actel RTAX2000S FPGA
- 20-30 MHz on Actel RT ProASIC3 FPGA
- Certified SPARC V8 by SPARC International
- Suitable for space and military applications
- Baseline processor for space projects in US, Europe and Asia
FPGA interfaces

- SpaceWire links with RMAP to support remote memory access for software download and debug, based on ECSS standards
- Selectively redundant CAN 2.0A/B bus interface, based on ISO and ECSS standards
- SPI interface for access to ADC devices, support for multiple accesses in parallel to allow correlations
- Pulse Width Modulation: symmetric and asymmetric
- General Purpose Input Output
- Memory Controller with EDAC to protect external Flash PROM and SRAM memory
- JTAG Debug Link, used for software download & debug
FPGA design using GRLIB IP library

- The FPGA design is based on GRLIB VHDL IP core library, which is a complete system-on-chip design environment available for end-user development:
 - Processors
 - Peripherals
 - Memory controllers
 - Serial and parallel high speed I/F
 - AMBA on-chip bus with Plug & Play
 - Fault tolerant and standard version
 - Support for tools & prototyping boards
 - Portability between technologies
- Can also integrate customer furnished IP cores
- Flexible licensing
Radiation aspects

• Single event latch-up (SEL): > 96 MeV-cm2/mg
• Single event upset (SEU):
 • Flash PROM memory: > 96 MeV-cm2/mg
 • SRAM memory: 1 MeV-cm2/mg
 • D-type flip-flop: 6 MeV-cm2/mg
• Single-Event Transient (SET):
 • Clocks: 4 MeV-cm2/mg
 • I/O banks: 7 MeV-cm2/mg
• Mitigation:
 • Triple modular redundancy (TMR) on all flip-flops
 • Memory protection: EDAC, parity, etc.
 • I/O bank failure detection leading to reset
 • Watchdog leading to reset
• Total ionizing dose (TID): 20 krad
 • Radiation monitor based on ring oscillator (under consideration)
FPGA design results

- Synthesis and place&route results (RT3PE3000L -1):
 - Size: approximately 95% (with TMR and EDAC)
 - System frequency: 20 MHz
 (optimizations towards 25 MHz is ongoing)

- Performances:
 - CPU: 17 Dhrystone MIPS
 - FPU: 3 MFLOPS
 - SpaceWire: 20 Mbit/s (twice the requirement)
 - CAN: 1 Mbit/s
 - SPI: 10 Mbit/s
 - JTAG: 1 Mbit/s
Prototype board – PCB version

- Prototype MCC computer board (MCC-C), based on commercial grade components, contains:
 - A3PE3000L FPGA
 - SRAM memory
 - Flash PROM memory
 - Four ADC devices
 - LVDS I/F for SpaceWire
 - ISO11898 I/F for CAN
 - Power regulation
 - Connectors to interface analogue boards
 - MDM-9 connectors for SpaceWire & CAN (not on final MCC)
Software environment

- RTEMS real time operating system:
 - Version 4.10
 - Drivers for IP cores in FPGA:
 - SpaceWire or CAN controller
 - SPI (for ADC communication)
 - Memory controller
 - PWM, GPIO, etc.

- GRMON hardware debug monitor:
 - Supporting all kernels/compilers
 - Command line or GUI
 - GDB remote debug support
 - Connects to MCC via JTAG
Status and follow-on

Status:
• MCC FPGA design ready for Critical Design Review (CDR)
• MCC PCB prototype computer board ready for production
• RTEMS drivers already being used with TSIM LEON3 simulator and in other projects

Follow-on activities:
• Based on the presented experience with the ProASIC3 technology, it seems feasible to move from anti-fuse technology to Flash based technology
• Investigating the possibility to offer existing LEON3FT-RTAX products also on RT ProASIC3 technology
• Preparing already now for the next generation Flash based FPGA technology
Conclusions

- The re-programmable RT ProASIC3 FPGA technology fits well within applications with moderate radiation requirements.
- The in-situ programmability enables the development of highly miniaturized systems which can be adapted to customers needs late in the development cycle.
- Porting a LEON3-FT system from anti-fuse to Flash-based FPGA technology went smoothly, with much of the IP core library work already performed two years ago for the commercial version of the LEON3 processor.
- The authors acknowledge ESA for the commissioning and funding of the development of the MCC under ESA contract number 21737, lead by Dr Johan Köhler.
General contact information

- LEON3 / GRLIB information:
 http://www.Aeroflex.com/Gaisler

- LEON3FT-RTAX-S data sheet and user manual:
 http://www.Aeroflex.com/Gaisler

- Motion Control Chip information:
 http://www.AACMicrotec.com/prod_3.htm

- Contact:
 sales@gaisler.com