
1

Modular Design of FPGA-Based 
Accelerators in C

Walid Najjar and Jason Villarreal
Computer Science & Engineering, University of California Riverside
& Jacquard Computing Inc.



FPGAs	
  Poten+al	
  -­‐	
  HW	
  Accelerators	
  for	
  HPC

Accelerate computationally 
demanding applications
– Molecular Dynamics
– Genetic String Matching
– XML Query processing
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Applications could take days to 
weeks to run on multiprocessor 
systems

– Specialized hardware could significantly 
reduce the time



Strengths	
  of	
  FPGAs

Massive amounts of parallelism available
– Much greater level of parallelism than any processor

Large pipelines can be created
– Streaming applications are very efficient

Reprogrammability
– Several applications may use the same FPGA

Available now
– Don’t have to wait for an ASIC to be created
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Problem:	
  Programmability

FPGAs are programmed with low level hardware description 
languages
– Tedious and error-prone
– Clock-level accuracy required
– Not a common skill set for application programmers

Different strengths from software
– Cannot just put software on an FPGA and expect an improvement

• SW good at large data structures and memory
• HW good at large number of operations occurring simultaneously

– Typically, an optimal HW algorithm is much different from an optimal  
SW algorithm

• Temporal versus spatial domain
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ROCCC

Riverside Optimizing Compiler for Configurable Computing

Code acceleration 
– By mapping of circuits to FPGA
– Achieve same speed as hand-written VHDL codes

Hardware generated from C descriptions
– Improves productivity
– Allows design and algorithm space exploration

Keeps the user fully in control
– We automate only what is very well understood



ROCCC	
  1.0	
  Example
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void begin_hw() {} ;
void end_hw() {} ;
int main()
{
  int numAtoms ;
  float p_i_x, inputArray[100], r2, t2, r2_delta, cutoff2_delta ;
  float outputArray[100] ;
  begin_hw();
  for (k = 0 ; k < numAtoms ; ++k)
  {
    t2 = p_i_x - inputArray[k] ;
    r2 = t2 * t2 + r2_delta ;
    if (r2 <= cutoff2_delta)
      outputArray[k] = 1 ;
    else
      outputArray[k] = 0 ;
  }
  end_hw() ;
  return 0 ;
}
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Execu+on	
  Model

Decoupled architecture
–Memory accesses 

separate from datapath 
instructions

–Memory accesses 
configured by the compiler

–Parallel loop bodies
–Smart input buffer handles 

data reuse

Memory
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Hardware	
  Accelerator	
  Approach	
  To	
  Speedup

Profile entire application 

– Find the most computationally 
intensive part of the code
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Rewrite critical region as 
hardware

Replace original code 
with a call to hardware

Original C Code

Critical Region
Generated 
Hardware

Rewritten 
for ROCCCHardware Calls

Pass Through ROCCC
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Issues	
  Revealed	
  by	
  ROCCC	
  1.0

Top down compilation approach
• Isolate the user from the details of the target platform
• Works with CPUs: one underlying fundamental model, von Neumann

Complexity of platforms
– A plethora of platforms with varying capabilities

• On board memories, I/O interfaces, firmware support etc.
• Evolving FPGA architectures, a moving target

– User is unaware of complexities of target platform
• Complexities are reflected in the compiler

Hardware Specification

App.
C 

Programs
Hardware 

Impl.

?

User must navigate 
hardware design space 

using compiler 
transformations: compiler 

technology is not suitable for 
this
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Next	
  Genera+on:	
  ROCCC	
  2.0

Goals:
– Give more control of generated structure to designers

• Build hardware systems in C from the bottom up
• Description of components and interconnections using a C subset

– Still maintain optimizations for hardware from ROCCC 1.0
• User controlled optimizations

Two objectives:
– Modularity and composability
– Keeping the positives of ROCCC 1.0
– Enable hardware reuse

How
– Compile standalone C functions to HDL modules
– Import pre-existing cores

• IP or pre-compiled
– Separate platform specific interfaces from algorithm codes

• These can be other modules too
• Multiple interfaces possible in each platform
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ROCCC	
  2.0	
  Design	
  Flow

Conceive hardware algorithm

System Code
C

Module code
C

Module code
VHDL

ROCCC 2.0

IP Core Module code
VHDL

Module library

ROCCC 2.0

Complete System

Platform Interface

Build circuit bottom-upFinal evaluation on platform

– Write function in C (may use other modules)– Generate a new HDL module– Test, evaluate, and verify– Repeat– Write system code to process streams if necessary– Add platform interface– Create system in VHDL



Modules	
  And	
  Systems	
  in	
  ROCCC

No additional keywords or constructs added to C
– If you can read C, you can read and understand ROCCC code
– Can compile and run module code in software to verify functionality

Module: hardware equivalent of a procedure
– Can exist as: 

• C code, 
• VHDL/Verilog code
• Hardware macro (FPGA specific circuit)

– Can be imported into other C modules or C code in any of these 
forms

System: hardware that processes streams of data
– Written as ROCCC 1.0 code with the addition of modules
– Modules can be replicated and pipelined through compiler 

manipulations
– Generated VHDL communicates through a platform independent 

ROCCC Abstraction Layer
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ROCCC	
  Abstrac+on	
  Layer

Platform independent hooks to connect to memories or 
streams
– Memories may be on-chip or off-chip
– Streams may be any input device

• Ethernet, serial, microphone in, etc
Each board/system can connect to these hooks through 

state machines
– User may control optimizations to specialize hardware for a 

certain board
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Expressing	
  a	
  Module	
  in	
  C

Specify an interface
– Struct that specifies all inputs and outputs
– All signals that can be seen outside the black box must be 

specified
Specify an implementation

– A function that takes and returns an instance of the struct
– All outputs should be assigned in the function and all inputs 

read
– Local variables translate into registers internal to the function

14



15

ROCCC	
  2.0	
  C	
  Module	
  Example
typedef struct
{
  int realOne_in ;
  int imagOne_in ;
  int realTwo_in ;
  int imagTwo_in ;
  int realOmega_in ;
  int imagOmega_in ;

  int A0_out ;
  int A1_out ;
  int A2_out ;
  int A3_out ;
} FFT_t ;
FFT_t FFT(FFT_t f)
{
  f.A0_out = f.realOne_in + (f.realOmega_in * f.realTwo_in) - 
                   (f.imagOmega_in * f.imagTwo_in) ;
  // ....
  return f ;
}

inputOne inputTwo inputOmega

A0 A1 A2 A3

* *

+

-



Modules	
  Are	
  Exported	
  Back

ROCCC maintains a database of previously compiled 
modules
– Exported back at the C level as function calls
– Exported to hardware implementations as VHDL

Standard database can be interfaced and appended through 
SQL
– IP can be added through SQL queries if no C exists

• Example: Floating point cores from Xilinx CoreGen
– All the cores in the database can be integrated directly into the 

pipelines of larger systems compiled with ROCCC
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ROCCC	
  2.0	
  -­‐	
  Using	
  Modules	
  as	
  Building	
  Blocks
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#include “roccc-library.h”

OneStageButterfly_t OneStageButterfly(OneStageButterfly_t t)
{
  // Each FFT submodule is instantiated with a call to the exported function

  FFT(t.input0_in, t.input1_in, t.input16_in, t.input17_in, t.omega0_in, t.omega1_in,
          t.out0_out, t.out1_out, t.out2_out, t.out3_out) ;

  FFT(t.input2_in, t.input3_in, t.input14_in, t.input15_in, t.omega0_in, t.omega1_in,
          t.out4_out, t.out5_out, t.out6_out, t.out7_out) ;

  // The rest of the FFT modules...

  return t ;
}
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Example	
  System	
  Code

void firSystem()
{
  int A[100] ;
  int B[100] ;
  int EndValue ;
  int i ;
  int myOutput ;

  for (i = 0  ; i < EndValue ; ++i)
  { 
    FIR(A[i], A[i+1], A[i+2], 
           A[i+3], A[i+4], myOutput) ;
    B[i] = myOutput ;
  }
}

Input 
Fifo A

Output 
Fifo B

Input Smart Buffer

ROCCC Abstraction Layer

ROCCC Abstraction Layer

FIR Module

Generated System Code

Input 
Memory 

A



Variance	
  Filter	
  -­‐	
  System	
  Code

Problem:
– Locate moving objects over a number of frames

• Such as satellites or asteroids
Procedure:

– For each pixel in N frames, compute the variance
– Compare variance to threshold, and zero out anything under
– Moving objects become detected

Written as ROCCC system code
– 270 lines of C code translated into ~17000 lines of VHDL
– Synthesized targeting a Virtex 5 FX70T

• 3491 Slices (7% of the FPGA)
• 164.4 MHz clock
• Generates 1 output per clock cycle
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Steps	
  in	
  Compila+on

Hi-CIRRF Transformations (SUIF)
– High level optimizations such as constant propagation and folding
– Parallelizing optimizations including extensive loop unrolling
– Identification of input and output scalars and streams
– Exporting the module to the C level library
– Outputting the Hi-CIRRF

Lo-CIRRF Transformations (LLVM)
– Identify floating point operations and replace with calls to hardware
– Convert the CFG into a DFG
– Pipeline the design (inserting copies where appropriate)
– Generate the VHDL structure
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Future	
  ROCCC	
  Improvements

Triple Modular Redundancy
– Available at any module level

Multi-FPGA communication built in through channel specification
– Different platforms must interface with our common interface

Design space exploration through different transformations
– Different levels of modularization
– Systolic array generation
– Pipelined unrolling
– Tree based unrolling

• Filter versus accumulation
– All generated from the same C description and controlled through 

switches
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Summary

ROCCC 2.0 opens up modular construction of hardware to C 
programmers
– No timing necessary
– Specific hardware designs can be targeted to leverage the strengths 

of FPGAs
Hardware optimizations provide significant speedup over software

– Available at any level in the modular design
Hardware accelerators for High Performance Computing can be 

integrated at the C level
– Working software can produce working hardware
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Distribu+on	
  Available

ROCCC 2.0 - Version 0.3
– www.cs.ucr.edu/~roccc
– System is open source
– Example system and module code

• Testbenches included
• Tested on Linux machines

– GUI
• Uses QT libraries - platform independent
• Easy integration of available modules
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