
1

Modular Design of FPGA-Based
Accelerators in C

Walid Najjar and Jason Villarreal
Computer Science & Engineering, University of California Riverside
& Jacquard Computing Inc.

FPGAs	
 Poten+al	
 -­‐	
 HW	
 Accelerators	
 for	
 HPC

Accelerate computationally
demanding applications
– Molecular Dynamics
– Genetic String Matching
– XML Query processing

2

HP C
Program

Compute
Node

Compute
Node

Compute
Node

Compute
Node ...Compute

Node
Compute

Node
Compute

Node
Compute

Node
FPGA
Node
FPGA
Node

Applications could take days to
weeks to run on multiprocessor
systems

– Specialized hardware could significantly
reduce the time

Strengths	
 of	
 FPGAs

Massive amounts of parallelism available
– Much greater level of parallelism than any processor

Large pipelines can be created
– Streaming applications are very efficient

Reprogrammability
– Several applications may use the same FPGA

Available now
– Don’t have to wait for an ASIC to be created

3

Problem:	
 Programmability

FPGAs are programmed with low level hardware description
languages
– Tedious and error-prone
– Clock-level accuracy required
– Not a common skill set for application programmers

Different strengths from software
– Cannot just put software on an FPGA and expect an improvement

• SW good at large data structures and memory
• HW good at large number of operations occurring simultaneously

– Typically, an optimal HW algorithm is much different from an optimal
SW algorithm

• Temporal versus spatial domain

4

5

ROCCC

Riverside Optimizing Compiler for Configurable Computing

Code acceleration
– By mapping of circuits to FPGA
– Achieve same speed as hand-written VHDL codes

Hardware generated from C descriptions
– Improves productivity
– Allows design and algorithm space exploration

Keeps the user fully in control
– We automate only what is very well understood

ROCCC	
 1.0	
 Example

6

void begin_hw() {} ;
void end_hw() {} ;
int main()
{
 int numAtoms ;
 float p_i_x, inputArray[100], r2, t2, r2_delta, cutoff2_delta ;
 float outputArray[100] ;
 begin_hw();
 for (k = 0 ; k < numAtoms ; ++k)
 {
 t2 = p_i_x - inputArray[k] ;
 r2 = t2 * t2 + r2_delta ;
 if (r2 <= cutoff2_delta)
 outputArray[k] = 1 ;
 else
 outputArray[k] = 0 ;
 }
 end_hw() ;
 return 0 ;
}

7

Execu+on	
 Model

Decoupled architecture
–Memory accesses

separate from datapath
instructions

–Memory accesses
configured by the compiler

–Parallel loop bodies
–Smart input buffer handles

data reuse

Memory

Input Smart Buffer

Datapath

Unrolled Pipelined Loop Bodies

Output Smart Buffer/Fifo

DMA Engine

DMA Engine

Memory

Hardware	
 Accelerator	
 Approach	
 To	
 Speedup

Profile entire application

– Find the most computationally
intensive part of the code

8

Rewrite critical region as
hardware

Replace original code
with a call to hardware

Original C Code

Critical Region
Generated
Hardware

Rewritten
for ROCCCHardware Calls

Pass Through ROCCC

9

Issues	
 Revealed	
 by	
 ROCCC	
 1.0

Top down compilation approach
• Isolate the user from the details of the target platform
• Works with CPUs: one underlying fundamental model, von Neumann

Complexity of platforms
– A plethora of platforms with varying capabilities

• On board memories, I/O interfaces, firmware support etc.
• Evolving FPGA architectures, a moving target

– User is unaware of complexities of target platform
• Complexities are reflected in the compiler

Hardware Specification

App.
C

Programs
Hardware

Impl.

?

User must navigate
hardware design space

using compiler
transformations: compiler

technology is not suitable for
this

10

Next	
 Genera+on:	
 ROCCC	
 2.0

Goals:
– Give more control of generated structure to designers

• Build hardware systems in C from the bottom up
• Description of components and interconnections using a C subset

– Still maintain optimizations for hardware from ROCCC 1.0
• User controlled optimizations

Two objectives:
– Modularity and composability
– Keeping the positives of ROCCC 1.0
– Enable hardware reuse

How
– Compile standalone C functions to HDL modules
– Import pre-existing cores

• IP or pre-compiled
– Separate platform specific interfaces from algorithm codes

• These can be other modules too
• Multiple interfaces possible in each platform

11

ROCCC	
 2.0	
 Design	
 Flow

Conceive hardware algorithm

System Code
C

Module code
C

Module code
VHDL

ROCCC 2.0

IP Core Module code
VHDL

Module library

ROCCC 2.0

Complete System

Platform Interface

Build circuit bottom-upFinal evaluation on platform

– Write function in C (may use other modules)– Generate a new HDL module– Test, evaluate, and verify– Repeat– Write system code to process streams if necessary– Add platform interface– Create system in VHDL

Modules	
 And	
 Systems	
 in	
 ROCCC

No additional keywords or constructs added to C
– If you can read C, you can read and understand ROCCC code
– Can compile and run module code in software to verify functionality

Module: hardware equivalent of a procedure
– Can exist as:

• C code,
• VHDL/Verilog code
• Hardware macro (FPGA specific circuit)

– Can be imported into other C modules or C code in any of these
forms

System: hardware that processes streams of data
– Written as ROCCC 1.0 code with the addition of modules
– Modules can be replicated and pipelined through compiler

manipulations
– Generated VHDL communicates through a platform independent

ROCCC Abstraction Layer

12

ROCCC	
 Abstrac+on	
 Layer

Platform independent hooks to connect to memories or
streams
– Memories may be on-chip or off-chip
– Streams may be any input device

• Ethernet, serial, microphone in, etc
Each board/system can connect to these hooks through

state machines
– User may control optimizations to specialize hardware for a

certain board

13

Expressing	
 a	
 Module	
 in	
 C

Specify an interface
– Struct that specifies all inputs and outputs
– All signals that can be seen outside the black box must be

specified
Specify an implementation

– A function that takes and returns an instance of the struct
– All outputs should be assigned in the function and all inputs

read
– Local variables translate into registers internal to the function

14

15

ROCCC	
 2.0	
 C	
 Module	
 Example
typedef struct
{
 int realOne_in ;
 int imagOne_in ;
 int realTwo_in ;
 int imagTwo_in ;
 int realOmega_in ;
 int imagOmega_in ;

 int A0_out ;
 int A1_out ;
 int A2_out ;
 int A3_out ;
} FFT_t ;
FFT_t FFT(FFT_t f)
{
 f.A0_out = f.realOne_in + (f.realOmega_in * f.realTwo_in) -
 (f.imagOmega_in * f.imagTwo_in) ;
 //
 return f ;
}

inputOne inputTwo inputOmega

A0 A1 A2 A3

* *

+

-

Modules	
 Are	
 Exported	
 Back

ROCCC maintains a database of previously compiled
modules
– Exported back at the C level as function calls
– Exported to hardware implementations as VHDL

Standard database can be interfaced and appended through
SQL
– IP can be added through SQL queries if no C exists

• Example: Floating point cores from Xilinx CoreGen
– All the cores in the database can be integrated directly into the

pipelines of larger systems compiled with ROCCC

16

ROCCC	
 2.0	
 -­‐	
 Using	
 Modules	
 as	
 Building	
 Blocks

17

#include “roccc-library.h”

OneStageButterfly_t OneStageButterfly(OneStageButterfly_t t)
{
 // Each FFT submodule is instantiated with a call to the exported function

 FFT(t.input0_in, t.input1_in, t.input16_in, t.input17_in, t.omega0_in, t.omega1_in,
 t.out0_out, t.out1_out, t.out2_out, t.out3_out) ;

 FFT(t.input2_in, t.input3_in, t.input14_in, t.input15_in, t.omega0_in, t.omega1_in,
 t.out4_out, t.out5_out, t.out6_out, t.out7_out) ;

 // The rest of the FFT modules...

 return t ;
}

18

Example	
 System	
 Code

void firSystem()
{
 int A[100] ;
 int B[100] ;
 int EndValue ;
 int i ;
 int myOutput ;

 for (i = 0 ; i < EndValue ; ++i)
 {
 FIR(A[i], A[i+1], A[i+2],
 A[i+3], A[i+4], myOutput) ;
 B[i] = myOutput ;
 }
}

Input
Fifo A

Output
Fifo B

Input Smart Buffer

ROCCC Abstraction Layer

ROCCC Abstraction Layer

FIR Module

Generated System Code

Input
Memory

A

Variance	
 Filter	
 -­‐	
 System	
 Code

Problem:
– Locate moving objects over a number of frames

• Such as satellites or asteroids
Procedure:

– For each pixel in N frames, compute the variance
– Compare variance to threshold, and zero out anything under
– Moving objects become detected

Written as ROCCC system code
– 270 lines of C code translated into ~17000 lines of VHDL
– Synthesized targeting a Virtex 5 FX70T

• 3491 Slices (7% of the FPGA)
• 164.4 MHz clock
• Generates 1 output per clock cycle

19

Steps	
 in	
 Compila+on

Hi-CIRRF Transformations (SUIF)
– High level optimizations such as constant propagation and folding
– Parallelizing optimizations including extensive loop unrolling
– Identification of input and output scalars and streams
– Exporting the module to the C level library
– Outputting the Hi-CIRRF

Lo-CIRRF Transformations (LLVM)
– Identify floating point operations and replace with calls to hardware
– Convert the CFG into a DFG
– Pipeline the design (inserting copies where appropriate)
– Generate the VHDL structure

20

Future	
 ROCCC	
 Improvements

Triple Modular Redundancy
– Available at any module level

Multi-FPGA communication built in through channel specification
– Different platforms must interface with our common interface

Design space exploration through different transformations
– Different levels of modularization
– Systolic array generation
– Pipelined unrolling
– Tree based unrolling

• Filter versus accumulation
– All generated from the same C description and controlled through

switches

21

Summary

ROCCC 2.0 opens up modular construction of hardware to C
programmers
– No timing necessary
– Specific hardware designs can be targeted to leverage the strengths

of FPGAs
Hardware optimizations provide significant speedup over software

– Available at any level in the modular design
Hardware accelerators for High Performance Computing can be

integrated at the C level
– Working software can produce working hardware

22

Distribu+on	
 Available

ROCCC 2.0 - Version 0.3
– www.cs.ucr.edu/~roccc
– System is open source
– Example system and module code

• Testbenches included
• Tested on Linux machines

– GUI
• Uses QT libraries - platform independent
• Easy integration of available modules

23

