Modular Design of FPGA-Based
Accelerators in C

Walid Najjar and Jason Villarreal
Computer Science & Engineering, University of California Riverside
& Jacquard Computing Inc.

UCRIVERSIDE "CSE

FPGAs Potential - HW Accelerators for HPC

U Accelerate computationally U Applications could take days to
demanding applications weeks to run on multiprocessor
— Molecular Dynamics systems
— Genetic String Matching — Specialized hardware could significantly

reduce the time

Program

— XML Query processing

FPGA
Node

Strengths of FPGAs

O Massive amounts of parallelism available

— Much greater level of parallelism than any processor
ULarge pipelines can be created

— Streaming applications are very efficient
UReprogrammability

— Several applications may use the same FPGA
UAvailable now

— Don’t have to wait for an ASIC to be created

UCRIVERSIDE *"CSE

Problem: Programmability

UFPGAs are programmed with low level hardware description
languages
— Tedious and error-prone
— Clock-level accuracy required
— Not a common skill set for application programmers
U Different strengths from software
— Cannot just put software on an FPGA and expect an improvement

* SW good at large data structures and memory
* HW good at large number of operations occurring simultaneously

— Typically, an optimal HW algorithm is much different from an optimal
SW algorithm

» Temporal versus spatial domain

UCRIVERSIDE *"CSE

ROCCC

URiverside Optimizing Compiler for Configurable Computing

U Code acceleration
— By mapping of circuits to FPGA
— Achieve same speed as hand-written VHDL codes

UHardware generated from C descriptions
— Improves productivity
— Allows design and algorithm space exploration

U Keeps the user fully in control
— We automate only what is very well understood

UCRIVERSIDE *"CSE

ROCCC 1.0 Example

void begin_hw() {} ;
void end_hw() {} ;
int main()
{
int numAtoms ;
float p_i_x, inputArray[100], r2, t2, r2_delta, cutoff2_delta ;
float outputArray[100] ;
begin_hw();
for (k = 0 ; k < numAtoms ; ++k)
{
t2 = p_i_x - inputArray[K] ;
r2 =12 *t2 + r2_delta ;
if (r2 <= cutoff2_delta)
outputArray[k] = 1 ;
else
outputArray[k] = 0 ;

b
end_hw() ;
return 0 ;

b

UCRIVERSIDE "CSE

Execution Model

UDecoupled architecture

—Memory accesses I
7/ ' pu 7":. E::jl"gg

separate from datapath
instructions

—Memory accesses
configured by the compiler

—Parallel loop bodies

—Smart input buffer handles
data reuse

Datapath

DMA Engine

7

UCRIVERSIDE ="CSE

Hardware Accelerator Approach To Speedup

U Profile entire application

— Find the most computationally
intensive part of the code

Original C Code

URewrite critical region as
hardware

UPass Through ROCCC

UReplace original code
with a call to hardware

UCRIVERSIDE *"CSE

Issues Revealed by ROCCC 1.0

U Top down compilation approach
« Isolate the user from the details of the target platform
* Works with CPUs: one underlying fundamental model, von Neumann
U Complexity of platforms
— A plethora of platforms with varying capabilities
¢ On board memories, I/O interfaces, firmware support etc.
* Evolving FPGA architectures, a moving target

— User is unaware of complexities of target platform
« Complexities are reflected in the compiler

U Hardware Specification
Q
\

ms Q

UCRIVERSIDE *"CSE

User must navigate
hardware design space

using compiler

transformations: compiler
technology is not suitable for

this

Next Generation: ROCCC 2.0

UGoals:
— Give more control of generated structure to designers
* Build hardware systems in C from the bottom up
 Description of components and interconnections using a C subset
— Still maintain optimizations for hardware from ROCCC 1.0
* User controlled optimizations
U Two objectives:
— Modularity and composability
— Keeping the positives of ROCCC 1.0
— Enable hardware reuse
UHow
— Compile standalone C functions to HDL modules
— Import pre-existing cores
* IP or pre-compiled
— Separate platform specific interfaces from algorithm codes
* These can be other modules too
» Multiple interfaces possible in each platform

UCRIVERSIDE *"CSE

10

ROCCC 2.0 Design Flow

DB oild aireliiativttom plgtidthm
ebtieranadifilesgessary

Sistem Code

I I
l ROCCC 2.0

ROCCC 2.0
Module code |i i Module code
Platform Interface

Module library

b

UCRIVERSIDE ="CSE

11

Modules And Systems in ROCCC

U No additional keywords or constructs added to C
—If you can read C, you can read and understand ROCCC code
— Can compile and run module code in software to verify functionality
UModule: hardware equivalent of a procedure
— Can exist as:
* C code,
* VHDL/Verilog code
» Hardware macro (FPGA specific circuit)

— Can be imported into other C modules or C code in any of these
forms

U System: hardware that processes streams of data
— Written as ROCCC 1.0 code with the addition of modules

— Modules can be replicated and pipelined through compiler
manipulations

— Generated VHDL communicates through a platform independent
ROCCC Abstraction Layer

UCRIVERSIDE *"CSE

12

ROCCC Abstraction Layer

QPlatform independent hooks to connect to memories or
streams

—Memories may be on-chip or off-chip

— Streams may be any input device
* Ethernet, serial, microphone in, etc
UEach board/system can connect to these hooks through
state machines

—User may control optimizations to specialize hardware for a
certain board

UCRIVERSIDE *"CSE 13

Expressing a Module in C

USpecify an interface
— Struct that specifies all inputs and outputs
—All signals that can be seen outside the black box must be
specified
QSpecify an implementation
— A function that takes and returns an instance of the struct

— All outputs should be assigned in the function and all inputs
read

—Local variables translate into registers internal to the function

UCRIVERSIDE *"CSE 14

ROCCC 2.0 C Module Example

typedef struct

{
int realOne_in ;
int imagOne_in ;
int realTwo_in ;
intimagTwo_in ;
int realOmega_in ;
int imagOmega_in ;

int AO_out ;
intA1_out;
int A2_out ;
int A3_out ;
YFFT_t;
FFT_t FFT(FFT_tf)

f.AO0_out = f.realOne_in + (f.realOmega_in * f.realTwo_in) -
(f.imagOmega_in * f.imagTwo_in) ;

...

return f;

}

UCRIVERSIDE ="CSE

inputOne inputTwo inputOmega

I

A0 A1 A2 A3

15

Modules Are Exported Back

UROCCC maintains a database of previously compiled
modules

—Exported back at the C level as function calls
—Exported to hardware implementations as VHDL
UStandard database can be interfaced and appended through
SQL
—IP can be added through SQL queries if no C exists
» Example: Floating point cores from Xilinx CoreGen

—All the cores in the database can be integrated directly into the
pipelines of larger systems compiled with ROCCC

UCRIVERSIDE *"CSE 16

ROCCC 2.0 - Using Modules as Building Blocks

#include “roccc-library.h”
OneStageButterfly_t OneStageButterfly(OneStageButterfly t t)
/I Each FFT submodule is instantiated with a call to the exported function

FFT(t.input0_in, t.input1_in, t.input16_in, t.input17_in, t.omegal_in, t.omega1l_in,
t.outO_out, t.out1_out, t.out2_out, t.out3_out) ;

FFT(t.input2_in, t.input3_in, t.input14_in, t.input15_in, t.omega0_in, t.omegal_in,
t.out4_out, t.outs_out, t.out6_out, t.out7_out);

/I The rest of the FFT modules...

returnt;

}

UCRIVERSIDE *"CSE

17

Example System Code

void firSystem()

{
int A[100] ; ROCCC Abstraction Lay®
intBf1001; TmmTmTEmmmmmempmemcmomciomcee
int EndValue ——
i I
int myOutput ;

Generated System Code

for (i=0 ;i< EndValue ; ++i)

FIR(A[], Ali+1], Afi+2],
A[i+3], Ali+4], myOutput) ;
B[i] = myOutput ;
}
}

UCRIVERSIDE ="CSE

Variance Filter - System Code

UProblem:
— Locate moving objects over a number of frames
* Such as satellites or asteroids
UProcedure:
— For each pixel in N frames, compute the variance
— Compare variance to threshold, and zero out anything under
— Moving objects become detected
UWritten as ROCCC system code
— 270 lines of C code translated into ~17000 lines of VHDL
— Synthesized targeting a Virtex 5 FX70T
* 3491 Slices (7% of the FPGA)
* 164.4 MHz clock
 Generates 1 output per clock cycle

UCRIVERSIDE *"CSE

19

Steps in Compilation

UHi-CIRRF Transformations (SUIF)
— High level optimizations such as constant propagation and folding
— Parallelizing optimizations including extensive loop unrolling
— Identification of input and output scalars and streams
— Exporting the module to the C level library
— Outputting the Hi-CIRRF
U Lo-CIRRF Transformations (LLVM)
— Identify floating point operations and replace with calls to hardware
— Convert the CFG into a DFG
— Pipeline the design (inserting copies where appropriate)
— Generate the VHDL structure

UCRIVERSIDE *"CSE

20

Future ROCCC Improvements

UTriple Modular Redundancy
— Available at any module level
U Multi-FPGA communication built in through channel specification
— Different platforms must interface with our common interface
U Design space exploration through different transformations
— Different levels of modularization
— Systolic array generation
— Pipelined unrolling
— Tree based unrolling

« Filter versus accumulation

— All generated from the same C description and controlled through
switches

UCRIVERSIDE *"CSE 21

Summary

U ROCCC 2.0 opens up modular construction of hardware to C
programmers

— No timing necessary

— Specific hardware designs can be targeted to leverage the strengths
of FPGAs

UHardware optimizations provide significant speedup over software
— Available at any level in the modular design

UHardware accelerators for High Performance Computing can be
integrated at the C level

— Working software can produce working hardware

UCRIVERSIDE *"CSE 22

Distribution Available

UROCCC 2.0 - Version 0.3 YYD e P

[7]

Projects. 20 (@ codec |
— www.cs.ucr.edu/~roccc = —
— System is open source e

— Example system and module code =~ ™" e

MAC_t MACIMAC_t m)

« Testbenches included — B [ot o in a0 mowen
: : O —
« Tested on Linux machines G ! !
o
—GUI
e

» Uses QT libraries - platform independent o

DF_CompleteMDFloat

DF_MAC

« Easy integration of available modules Otogam

al=127)
/compile_llvmtovhdl.sh
rhc

