
Power Matters.

DSP Design Flow and Design
Techniques using RTAX-DSP FPGAs

Mir Sayed Ali
Application Engineering
August 2011

Topics

 RTAX-DSP Overview
 Microsemi DSP Design Flow

• Traditional DSP Design Flow
• DSP Design Flow using Synphony Model Compiler (SMC)
 Synthesis Strategy for RTAX-DSP Design
 Place and Route Recommendation
 Conclusion

2© 2011 Microsemi Corporation.

RTAX-DSP Overview

RTAX-DSP FPGAs

RTAX2000 RTAX4000 RTAX2000D RTAX4000D
R-cells 10,752 20,160 9856 18,480
C-cells 21,504 40,320 19,712 36,960
RAM Blocks 64 120 64 120
Math Blocks 0 0 64 120
Clocks 8 8 8 8
IO 684 840 684 840

 Enhancement to Existing RTAX-S/SL Devices
• Same 0.15 µ UMC process, same antifuse programming technology
• Enhanced R-cell improves Single Event Transient (SET) by 16x
• DSP mathblocks run 18-bit x 18-bit multiply-accumulate at 125 MHz

– Embedded DSP blocks protected against heavy ion radiation effects
• Routing architecture remains unchanged: 8.3% fewer logic modules

4© 2011 Microsemi Corporation.

RTAX-DSP MATH Block Overview

 Takes two 18-bit signed signals and
multiplies them for a 36-bit result and
then extended to 41 bits
• Can do multiplication followed by addition

and multiplication followed by subtraction
• Can accumulate the current multiplication

product with a previous result, a constant,
a dynamic value or a result from another
block

• Can be fractured to implement two
instances of signed 9x9

 All the signals of the MATH block
(except CIN, CDIN and CDOUT) have
optional registers to allow higher
performance

 Shift and cascade inputs allows creation
of precise and complex functions like
wide multipliers

5© 2011 Microsemi Corporation.

X +/-

>> 17

A[17:0]

B[17:0]

SUB

SHFTSEL

CIN[40:0]

Pn[40:0]

Pn-1[40:0]

CDSEL

FDBKSEL

OVFL

Note: optional input registers not shown

Basic Math Block

MATH18x18 Macro

 MATH Block macro
name is MATH18X18
• When SIMD = 1,

MATH block is
fractured into two 9
bit x 9 bit multipliers

• When SIMD = 0, it is
called the normal
mode

 During cascading
CDIN is driven by
CDOUT of the
previous block

6© 2011 Microsemi Corporation.

Microsemi DSP Design Flow

Microsemi DSP Design Flow

 Traditional DSP design flow
• DSP designer or system architect creates

high-level models using MATLAB/Simulink or
similar tool and creates a spec

• RTL designer analyzes the specification and
starts coding in RTL and verifies against the
algorithm specification

• Standard FPGA flow is used for RTL
creation, verification and implementation

 DSP design flow using Synphony
• Algorithm design is created using Synphony

blockset in Simulnk
– DSP designer or RTL designer efficiently

evaluate various architecture using Synphony
HLS tool

• Synphony generates automatic RTL
• Auto generated RTL is used in standard

FPGA flow including verification and
implementation

8© 2011 Microsemi Corporation.

Traditional DSP Design using Manual RTL Coding

 RTL for the DSP blocks can be created using
• Hand-coded RTL
• Custom IP blocks
• MATH Block core configurator in Libero IDE
• DSP IP from Microsemi

– Microsemi Provides a set of highly optimized DSP IP that take advantage of
the MATH block and offer outstanding performance:
– CoreFFT: Implement forward and inverse 256-, 512- and 1,024-point complex Fast

Fourier Transform (FFT)
– CoreFIR: Implement Single rate Fully Enumerated (parallel) or Single rate Folded

(semi-parallel) or Multi-rate Polyphase Interpolation FIR filter
– CoreDDS: To generate a sine or cosine waveform as well as the complex sinusoid
– CoreCORDIC: For calculating the trigonometric functions of sine, cosine, magnitude,

and phase

9© 2011 Microsemi Corporation.

MATH Block Core Configurator

 Several MATH block core generators
available in Libero IDE
• SgHardMult (Simple Multiplier)
• SgHardMultAddSub (Multiplier with

Adder/Subtractor)
• SgHardMultAcc (Multiplier with

Accumulator)
 Each core has its own configurator GUI

and can be accessed from the Catalog
in Libero IDE
• Cores are displayed under “Arithmetic”

node in the Catalog
 For more info, refer to each core’s

handbook:
http://www.actel.com/documents/sghardmult_HB.pdf
http://www.actel.com/documents/sghardmult_addsub_HB.pdf
http://www.actel.com/documents/sghardmult_acc_HB.pdf

10© 2011 Microsemi Corporation.

Hard Multiplier Adder/Subtractor Generator

http://www.actel.com/documents/sghardmult_HB.pdf
http://www.actel.com/documents/sghardmult_addsub_HB.pdf
http://www.actel.com/documents/sghardmult_acc_HB.pdf

Complexity of Analyzing DSP Block Architecture for
Hand-Coded RTL
 Writing Hand-coded RTL is time consuming
 Limited ability for the designer to fully explore the design space.

• Example: A FIR filter can be implemented in various ways and with various pipeline
options

– (Ref: Ramsey Hourani, Ravi Jenkal, W. Rhett Davis, Winser Alexander “Automated Design Space
Exploration for DSP Applications” Journal of Signal Processing Systems Volume 56, Numbers 2-3,
199-216, DOI: 10.1007/s11265-008-0226-2)

11© 2011 Microsemi Corporation.

DSP Design Flow using Synphony AE

12© 2011 Microsemi Corporation.

• Library of synthesizable fixed-point
functions for math and signal processing

• High-level IP for key wireless &
communications applications

• Multirate support
• Vector math support
• High-Level of abstraction

Synphony Blockset in Simulink
Synthesizable High-Level IP for

Communications and Multimedia

Digital Modulator
Custom Block

sym_in Iq_out
½ K=7

Convolutional
Encoder

x y
|||||

Serial to Parallel

s pZ-1
256

Sequence

x yZ-1
↑16

Upsample FIR

x y
ufix2 ufix2ufix1 ufix2(2) sfix3(2) sfix14_En11(2)

Digital Up Converter

IQin
IFout

Osc
Port Out

sfix14_En12

Filtering
Library

Communications
Library

Source
Library

Subsystem with
DDS + Multipliers + CIC

Example Wireless Transceiver using Synphony Library:
colors = different sample rates
bold = vector

Multi-Rate
Library

Multi-Rate
Library

User-Defined
Custom Block

Running Synphony Model Compiler

 Instantiate SHLSTool block
inside the model

 Double-clicking SHLSTool
block will open the GUI that
points to the model file
 Can also be opened at the

command line with shlstool
 Create the implementation by

clicking on New Implementation to
bring up the Implementation
dialog box.

 Specify the following:
 Implementation Name
 Device info
 Output types (Verilog, VHDL)
 Design options (Global

Reset, …)
 Click Run

SMC Optimization Overview

 System-wide optimizations are directly controlled by the
constraints. They are applied globally to the entire design to create a
system-wide architecture
• Top-level optimization control is done by “constraints” in lower left panel
 IP-level optimizations are automatically done at the block level for

more complicated IP-level functions
 All optimizations are “target-aware” based on the technology

characterization of the selected target
 Optimizations will sometimes rely on logic synthesis inferencing in

the downstream tool to optimize operations to device resources
 A baseline implementation is created when no constraints are

provided, but will still reflect many optimizations for target,
inferencing, and IP.

 Advanced controls are also available

15© 2011 Microsemi Corporation.

Top level Optimization

 Folding
• Performs time-multiplexed resource sharing during

area/speed tradeoffs within a single-channel system
– For example, consider a FIR filter with 50 taps (stages)

running at 1 MHz. Each tap has an associated multiplier
and adder function. One approach would be to use 50
multipliers and 50 adders running at 1 MHz. Alternatively
the architecture could comprise one multiplier and one
adder running at 50 MHz, with the intermediate results
being stored in the internal memory

 Retiming
• Rearranges registers so as to optimize speed, while

preserving functionality
 Multi-channelizing

• Generates a multi-channel system from a single-
channel specification to automatically optimize the
entire design at multiple levels by applying pipelining,
scheduling and binding optimizations across model
boundaries

Analyzing Blocks Using Synplify HDL Analyst

 After compiling the RTL
in Synplify PRO, user
can bring up the HDL
Analyst RTL
• The HDL Analyst tool

enables graphical browsing
and search of the design
RTL

 Use the RTL View to
inspect the structure of
the generated
VHDL/Verilog

17© 2011 Microsemi Corporation.

Synthesis Strategy for RTAX-DSP
Design

MATH Block Mapping in Synplify

 Synplify Pro tool extracts the following logic structures from the RTL and
maps them to RTAX-DSP MATH Blocks
• Multipliers
• Mult-adds (multiplier followed by an adder
• Mult-subs (multiplier followed by a subtractor)
 By default, multipliers with input widths of 3 or greater are mapped to MATH

Block and splits the multipliers that exceed these limits of the basic blocks
• Default mapping behavior can be controlled through an attribute:

– syn_multstyle = “logic” or “DSP”
 Synplify packs multiplier, input registers, output registers, and

subtractor/adders into the same RTAX-DSP MATH Block, even if they are in
different hierarchies
• Packs registers at inputs and outputs as long as all the registers use the same

clock
– If the registers have different clocks, the clock that drives the output register gets priority,

and all registers driven by that clock are packed into the block.
– If the outputs are unregistered and the inputs are registered with different clocks, the input

registers with input that has a larger width get priority, and is packed in the RTAX-DSP
MATH block

• Infer pipelined multipliers to achieve max performance

19© 2011 Microsemi Corporation.

Example: Wide Multiplier Mapping

 Simple 20x17-bit unsigned registered multiplier

Y=A[19:0] * B[16:0]
= ((A[19:17]<<17) + (1’b0& A[16:0])) * B[16:0]
= ((A[19:17]* B[16:0]) <<17) + ((1’b0& A[16:0]) * B[16:0])

P1= ((1’b0& A[16:0]) * B[16:0])
P2= (A[19:17]* B[16:0]) + (P1>>17)
Y = {P2[19:0],P1[16:0]}

20© 2011 Microsemi Corporation.

A[19:17]

B[16:0]

1’b1

B[17:0]

A[17:0]

SHFTSEL

P[40:0]

CDOUT[40:0]

1’b0& A[16:0]

B[16:0]

1’b0

B[17:0]

A[17:0]

SHFTSEL

P[40:0]

CDOUT[40:0]

Y[36:17]

(1’b0& A[16:0]) * B[16:0])

>>17

A[19:17] * B[16:0])

Y[16:0]

P[19:0]

CDIN[17:0]

CDIN[17:0]

MATH18x18

MATH18x18

Balancing Registers

Place and Route Recommendation

Place and Route

 Designer is the Place and Route that performs the Layout for RTAX-
DSP design
• Supports Timing Driven Place and Route (TDPR) and Power Driven Place

and Route (PDPR)
• Various options available including multiple seeds sessions, high effort level,

and “Hold Time Fix”
• Designer supports the standard SDC (Synopsys Design Constraints)

– Apply clock exceptions such as multi-cycle and false paths to avoid several
unnecessary iterations

– Specify appropriate timing constraints and the physical constraints to map clocks and
high fanout before running the design

22© 2011 Microsemi Corporation.

Recommended TDPR Flow

 Most of the DSP design timing challenges may come from one or two
DSP blocks
• Use block flow to deal with these timing critical blocks

– Please refer to www.actel.com/documents/designer_ug.pdf for block flow

 Recommended TDPR Flow
1. Run the regular flow using default setting in Synphony and Synplify
2. Check/modify HCLK/RCLK assignment and run Layout with the timing constraint

including timing exception
3. If timing constraint are not met and if the slack is less than 10%, use floor planning

and various Layout options
4. If timing constraint are not met and if the slack is more than 10%, identify the

bottleneck block and try to optimize
– If the bottleneck block is from DSP block generated from Synphony, apply the

Synphony optimization setting and run the flow
– If the bottleneck block is from DSP block created by the user RTL, try to modify the

RTL to use the timing optimized coding style and run the flow
– May need to use block flow for the critical block

5. Finally use floor planning and various Layout options to meet timing if needed

23© 2011 Microsemi Corporation.

http://www.actel.com/documents/designer_ug.pdf

Conclusion

Conclusion

 RTAX-DSP MATH Blocks can perform DSP-related operations like
multiplication followed by addition, multiplication followed by
subtraction, and multiplication with accumulate
• MATH Blocks allow designers to easily parallelize the computational-intensive portions

of their design and offers high performance and low resource utilization for DSP-
intensive designs

 Traditional flow can be used, but can be timing consuming
 Synphony allows superior Simulink implementation flow

• Quickly create synthesizable multi-rate algorithms
– May need addition steps to convert encrypted RTL
– May not always give higher performance compared to Hand-coded RTL

• Higher capacity and superior optimization technologies for FPGA
• Tight integration with Synplify
• Best ease-of-use, portability and also re-use

25© 2011 Microsemi Corporation.

	DSP Design Flow and Design Techniques using RTAX-DSP FPGAs
	Topics
	RTAX-DSP Overview
	RTAX-DSP FPGAs
	RTAX-DSP MATH Block Overview
	MATH18x18 Macro
	Microsemi DSP Design Flow
	Microsemi DSP Design Flow
	Traditional DSP Design using Manual RTL Coding
	MATH Block Core Configurator
	Complexity of Analyzing DSP Block Architecture for Hand-Coded RTL
	DSP Design Flow using Synphony AE
	Synphony Blockset in Simulink
	Running Synphony Model Compiler
	SMC Optimization Overview
	Top level Optimization
	Analyzing Blocks Using Synplify HDL Analyst
	Synthesis Strategy for RTAX-DSP Design
	MATH Block Mapping in Synplify
	Example: Wide Multiplier Mapping
	Place and Route Recommendation
	Place and Route
	Recommended TDPR Flow
	Conclusion
	Conclusion

