

Achieving Safety Critical Designs With FPGAs

Bob Efram/Tom West Synopsys

Complete and Accurate Design Specification

- Early synthesis reports.
- Constraint checking,
- Clock domain cross checks

Built in Design Reliability

- Preserving critical design logic.
- Safe Finite State machines
- Triple Module Redundancy

Verifying the Design Meets Specification.

- Design visualization.
- Debug with RTL/Gate level Simulation.
- Debug on-chip implementation.

Reproducible, Documented Design Process

- Documentation
- **Revision Control**

Proof of Concept and Hardware-Based Validation.

Prototyping boards.

Complete and Accurate Design Specification

- Early synthesis reports.
- Constraint checking,
- Clock domain cross checks

Built in Design Reliability

- Preserving critical design logic.
- Safe Finite State machines
- Triple Module Redundancy

Verifying the Design Meets Specification.

- Design visualization.
- Debug with RTL/Gate level Simulation.
- Debug on-chip implementation.

Reproducible, Documented Design Process

- Documentation
- **Revision Control**

Proof of Concept and Hardware-Based Validation.

Prototyping boards.

Early Synthesis Reports to Verify Specification Accuracy.

- A complete specification defines the design:
 - Functionality and performance
 - Physical requirements: Device, package size, power.
- Without RTL, correlating the physical requirements with the functional requirements is difficult.
- Simulation tools verify functionality of RTL.
- Early synthesis reports provide:
 - Early information on size, performance, and area.
 - Early information on constraints.
 - Early information on clock domain synchronization.

Area and Timing Reports

Verify Area and Timing of RTL blocks as they are completed.

Block Area Report

I/O ports: 51

Register bits: 99 (0%)

RAM/ROM usage summary Single Port Rams (RAM256X1S): 16

Global Clock Buffers: 2 of 32 (6%)

Total LUTs: 151 (0%)

Starting Clock	Frequency	Frequency	Period	Period	Slack
dll_clk_1x_derived_clock	100.0 MHz		10.000	4.104	5.896
pin_clk	200.0 MHz		5.000	5.000	0.000

Constraints Checker

Checks constraint syntax and for timing constraints applied to non existent or invalid types of arguments/objects

Found 1 issues in 1 out of 37 constraints

Inapplicable constraints

define_clock { clk2 } -name { clk2 } -freq { 100 } -clockgroup { default_clkgroup_3 }
 @ E:"C:\bus_demo\bus_demo_haps_lx330_identify.sdc":1:0:1:0|object "clk2" does not exist

Accurate Design Specification Clock domain synchronization assurance

Find combinatorial paths that cross clock domains without synchronization

Clock1 and Clock2 controlled by clocks in <u>different</u> clock domains i.e. are in different clock groups

- Generates report for all paths that:
 - Start at state element in one clock domain (clock group)
 - End at state element in different clock domain (different clock group)
 Reports longest path between these 2 points
- User can then appropriately synchronize the path if synchronization was intended

Complete and Accurate Design Specification

- Early synthesis reports.
- Constraint checking,
- Clock domain cross checks

Built in Design Reliability

Preserving critical design logic.

- Safe Finite State machines
- Triple Module Redundancy

Verifying the Design Meets Specification.

Design visualization.

- Debug with RTL/Gate level Simulation.
- Debug on-chip implementation.

Reproducible, Documented Design Process

- Documentation
- **Revision Control**

Proof of Concept and Hardware-Based Validation.

Prototyping boards.

Preserving Parts of the Design from Optimization Maintain critical logic

- Synthesis will, by default, optimize the design to meet timing and then reduce area by
 - Collapsing nets, Dissolving Hierarchies
 - Removing duplicate registers and instances with unused outputs
- Use synthesis attributes to preserve
 - Redundant logic that you want to maintain for reliability purposes
 - Specific signals that you wish to be able to probe
 - FSM Error mitigation logic

Attribute	Value	Description
syn_keep	1/0	Preserve a net
syn_preserve	1/0	Preserve a cell / sequential component
syn_hier	firm, hard, macro, flatten	Preserve a block
syn_noprune	1/0	Preserve an instantiated component (Instance)

Safe State Machines.

- Synthesis tools are very good at optimizing FSMs for performance (FSM Compiler).
 - Re-encoding state-bits (ie one-hot)
 - Removing unreachable states. (ie the default/others clause)
- Solutions:
 - Use the attributes to preserve all logic and manually determine the optimal FSM encoding.
 - Current attributes for automatic safe FSM optimization.
 - syn_encoding=safe Drives FSM to reset state for illegal states. Best for FSM performance but limited for customization. Used for 10 years for space based designs.
 - New automatic safe FSM attributes
 - Automatic preservation of the default/others clause. Allows customization of error detecting/correcting. May affect performance depending on others clause logic.
 - Hamming error detection and correction. Automatically detect and correct for illegal states and transitions. Used for slow FSMs due to correction logic overhead.

TMR - Triple Mode Redundancy

- Synthesis tools are very good at optimizing away redundant logic.
 - Replicated logic in the RTL may be removed by synthesis.
- Solutions:
 - Use the attributes to preserve all logic and manually determine the optimal FSM encoding. Syn_preserve, syn_keep, syn_noprune.
 - Current attributes for automatic TMR optimization.
 - Syn_Radhardlevel = tmr Local TMR . Replicates sequential logic and inserts voters. MicroSemi today.
 - New automatic TMR.
 - Local TMR for Xilinx. Triplicates sequential logic and inserts voters.
 - Distributed TMR for Xilinx. Triplicates combinational and sequential logic and inserts voters.
 - Block based TMR for Xilinx. Triplicates RTL blocks and inserts voters.

Complete and Accurate Design Specification

- Early synthesis reports.
- Constraint checking,
- Clock domain cross checks

Built in Design Reliability

- Preserving critical design logic.
- Safe Finite State machines
- Triple Module Redundancy

Verifying the Design Meets Specification.

- Design visualization.
- Debug with RTL/Gate level Simulation.
- Debug on-chip implementation.

Reproducible, Documented Design Process

- Documentation
- **Revision Control**

Proof of Concept and Hardware-Based Validation.

Prototyping boards.

Integrated Crossprobing Between HDLAnalyst Views and Source

C0031	// declarations. I declared temp.
00032	reg [7:0] temp;
00033	if (add_sub)
00034	temp = b;
0/035	else
00036	temp = ~b;
00037	result = <mark>a + temp + !add_sub</mark> ;
00038	end
00039	
00040	endmodule
00041	

Starting Points with Max Worst Slack					
	Starting				
Arrival	-				
Instance	Reference				
Type Pin Time Slack					
	Clock				
	743 N				
crossbar.wb_conmax_top.s2.msel.arb0.state	e[1] sys_clk				
SDFFRX2 Q 0.589 0.374					
usb2.u4.csr[27]	phy_clk_2				
SDFFQX2 Q 0.678 0.375					
crossbar.wb_conmax_top.s3.msel.pri_out[0] sys_clk					
SDFFQX1 Q 0.904 0.376					

annotated timing

RTL Simulation

- Best visibility for correlation to the specification
- Slow, relative to FPGA speeds.
- Require comprehensive testbench and code coverage.

Evolution Of Hardware Debug at FPGA Speed

Logic Analyzer

ChipScope / SignalTap (Logic Analyzer-Like)

Embedded Logic Analyzer

Identify Solution (Simulator-Like)

Embedded HDL Analyzer

Observe and Debug Data From the FPGA

Identify Debugger

Data values from FPGA tapped

Simulation and and On-Chip Debug Integration Visualization & Selection of VCD Data in HDL Analyst

Compile Point/Partition Block Based Flows

- "Divide and conquer" approach that saves time and ensures design repeatability.
- Isolate parts of the design
 - That already work
 - That comprise IP for which you wish to maintain port names for constraints application
- Partitions can be maintained throughout Synthesis and Place and Route

Complete and Accurate Design Specification

- Early synthesis reports.
- Constraint checking,
- Clock domain cross checks

Built in Design Reliability

- Preserving critical design logic.
- Safe Finite State machines
- Triple Module Redundancy

Verifying the Design Meets Specification.

- Design visualization.
- Debug with RTL/Gate level Simulation.
- Debug on-chip implementation.

Reproducible, Documented Design Process

- Documentation
- **Revision Control**

Proof of Concept and Hardware-Based Validation.

Prototyping boards.

Reporting and Messaging Analyzing errors and warnings

- Click on an errors or warning message.
- Generate text reports for sign-off.

HDLAnalyst Schematic View.

Copy and Paste graphics into documentation and reports

RTL View with state machine primitive [one hot representation]

FSM Viewer – State Transition Bubble Diagram and Transition Table

Tcl Scripting To Generate Custom Reports

- In the command window
 - % source C:/report_dsp.tcl
 - % report_dsp
 - % report_rams
 - Generates custom reports for DSPs and RAMs.

DSP48 instances DSP48 instances

Technology View Instance Name: i:mult_1.un2_product_int[1:32] Technology View Primitive Name: DSP48E1_14 RTL View Instance Name: mult_1.g1\.0\.product_int[31:0]

Distrbuted Ram instances

Technology View Instance Name: i:ram1_inst.ram_inst.mem_mem_0_0 Technology View Primitive Name: RAM256X1S RTL View Instance Name: ram1_inst.ram_inst.mem[7:0]

Revision Control Systems

- Many different vendors, CVS, Subversion, ClearCase,....
- Required to prevent incorrect design files from becoming production!
- GUI based or command line.
- Red check mark = file checked out

Note:

Use *Update Status* to refresh the icons!

• Grey lock = file checked in

Complete and Accurate Design Specification

- Early synthesis reports.
- Constraint checking,
- Clock domain cross checks

Built in Design Reliability

Preserving critical design logic.

- Safe Finite State machines
- Triple Module Redundancy

Verifying the Design Meets Specification.

Design visualization.

- Debug with RTL/Gate level Simulation.
- Debug on-chip implementation.

Reproducible, Documented Design Process

- Documentation
- **Revision Control**

Proof of Concept and Hardware-Based Validation.

Prototyping boards.

Early Algorithm Verification With Prototyping Boards.

- Verify Algorithm size and speed before production boards are available.
- Allows the capability to confidently move high level languages (C, Simulink)
- Drive the prototype with:
 - Testbenches from PC based tools (Simulation, Simulink)
 - Real world data from external sources.

Prototyping Boards.

- FPGA based prototyping boards available from many vendors
 - Smaller board: Xilinx, MicroSemi, Avnet, Altera, .
 - Largest boards: Synopsys HAPS
- Look for:
 - Board FPGA size and speed.
 - Board flexibility to interface with PC Software (Simulation, C, Matlab)
 - Board flexibility to interface with external interfaces (PCIE, USB, Ethernet)
 - Board flexibility with clocks, voltages.

Universal Multi-Resource Bus (UMRbus) Functionalities & Use Modes

What It Is

- High-performance, low-latency communication bus
- Connections to every FPGA, memories, registers, etc.

Customer Benefits

- Remote prototype management
- Application-level programming
- Co-simulation
- Transaction-based verification

Complete and Accurate Design Specification

Constraint checking,

Design Specification checking

Built in Design Reliability

Triple Module Redundancy

Safe Finite State machines

Maintaining Debug and Test Logic.

Verifying the Design Meets Specification.

Debug with RTL/Gate level Simulation.

Debug on-chip implementation at the gate level.

Debug on-chip implementation at the RTL Level

Reproducible, Documented Design Process

Documentation

Revision Control

Proof of Concept and Hardware-Based Validation.

Prototyping boards.

Questions?

