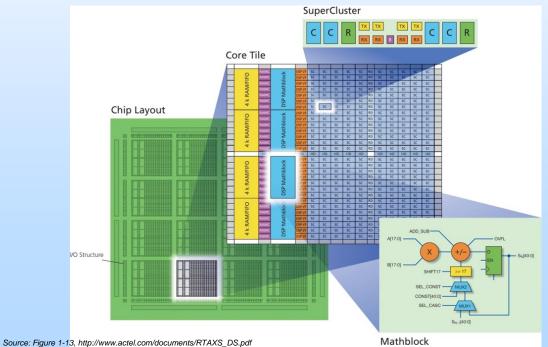



Single-Event Effects Testing of Embedded DSP Cores within Microsemi RTAX4000D FPGA Devices

Christopher E Perez Melanie D. Berg Mark R. Friendlich MEI Technologies in support of NASA/GSFC August 2011

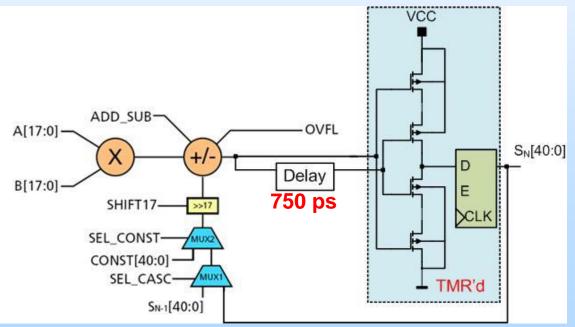
NASA


Motivation

- Perform an independent study to characterize DSP core single-event upset (SEU) behavior
- Test DSP cores across a large frequency range and across various input conditions
- Provide flight missions with accurate estimate of DSP core error rates and error signatures

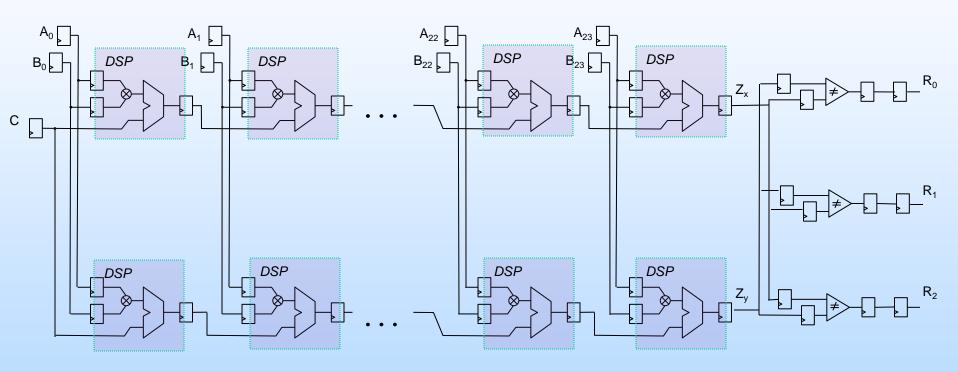
Device Under Test

- Microsemi RTAX4000D FPGA
 - 0.15 µm CMOS logic fabric with anti-fuse configuration technology
 - Embedded multiply-accumulate DSP blocks
 - Flip-flops SEU-hardened via Localized Triple Modular Redundancy (LTMR) and output buffer triple-drive

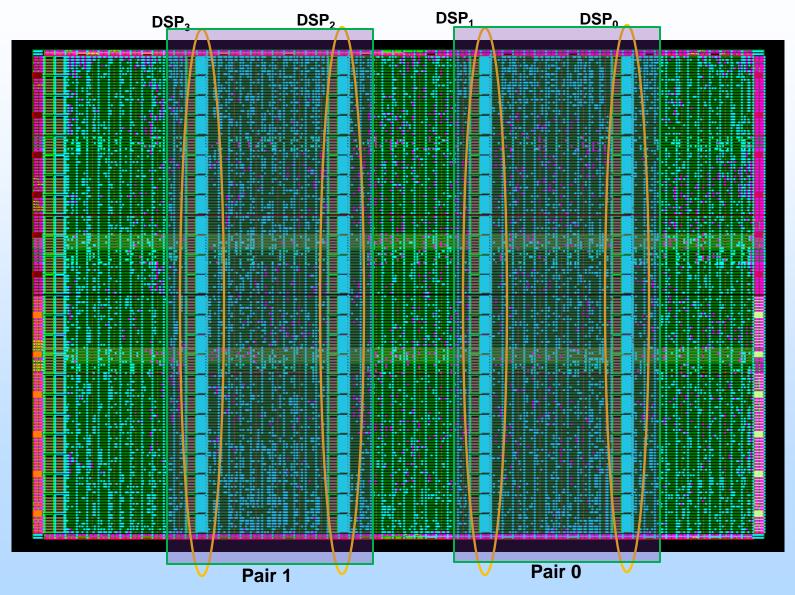


DSP Blocks

Functionality

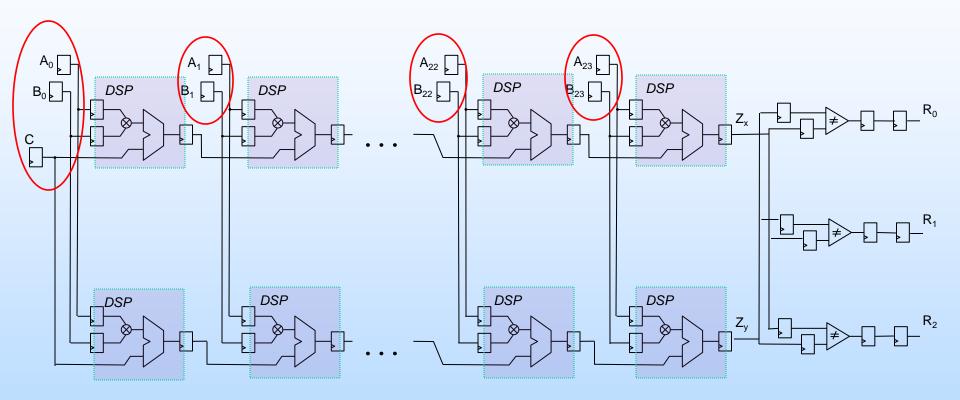

- 18x18 bit multiplier with 41-bit accumulator
- Inputs and outputs can be registered to perform 125 MHz single-cycle multiplyaccumulate functionality
- Hardening
 - SEU hardened by LTMR of all flip-flops
 - Single-event transient (SET) mitigated by temporal redundant circuit that is placed at the input data pin of each flip-flop

Source: IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010, pp. 3537-3546

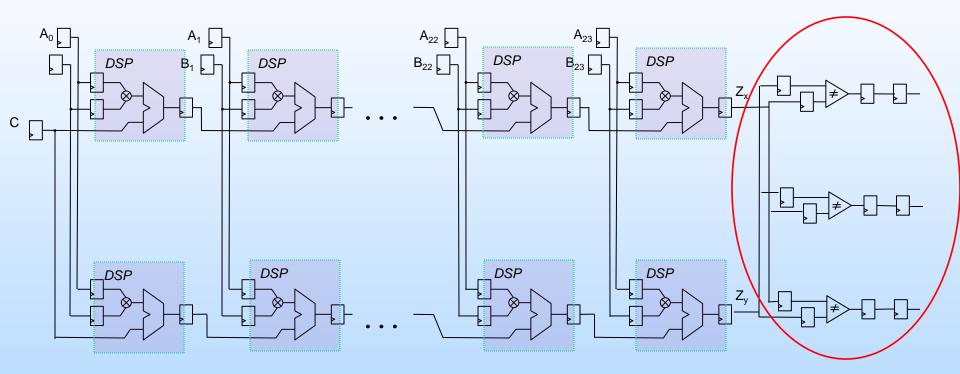


Test Structure – DSP Chains

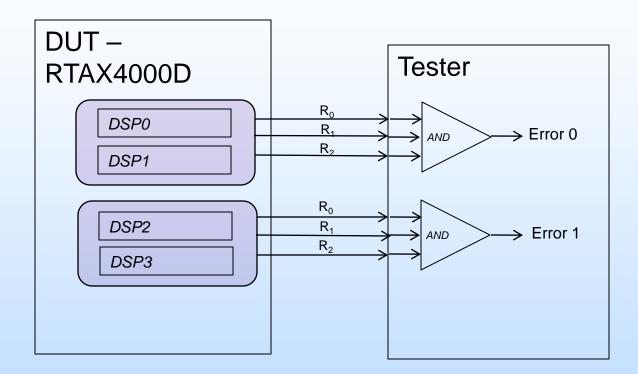
- Chains consist of 24 cascaded AxB+C DSP blocks
- All chains are identical
- The chains are paired to perform internal checking


Test Structure – Layout of DSP Chains

To be presented by Chris Perez at the Revolutionary Electronics in Space (ReSpace) / Military and Aerospace Programmable Logic Devices (MAPLD) 2011 Conference, Albuquerque, NM, August 22-25, 2011, and to be published on nepp.nasa.gov web site.


Test Structure – DSP Coefficient Control

- A and B (18-bit) parameters are selected by the tester
- Only the first-stage C (41-bit) parameter is selected by the tester



Test Structure – DSP Comparison Logic

- DSP blocks to be isolated by triplication of comparison logic
 - Eliminate SETs/SEUs contributed from other logic

Example DSP Upset

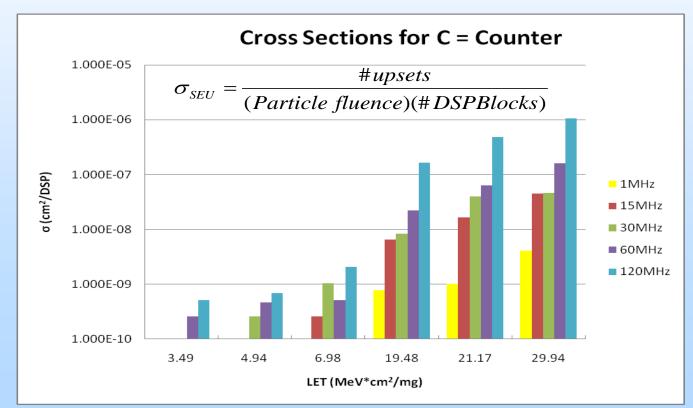
- Logic analyzer screenshot of actual SEU in DUT DSP cores captured by tester system
- Sampling clock is >2X frequency of maximum DSP operating frequency

	Intronix LogicPort Logic An	alyzer	- C:\Doo	ument	s and S	ettings	Lab1 Deskt	op\Test_l	DataVLBNL_05	_2011 Wactel_F	RTAX4000D\logic	port\RTAX4	000D_DSP.
Fi	e Options Setup Acquisition Vi	iew Hel	lp										
Waveforms State List Notes 🖻 🗋 🖶 🎒 👬 🕸 🗮 🕨 א 📮 🗉 T! 🖌 👫 🚽 🕀 🗨 🎯 🦉 Buffer Position:													
	Sample Rate 💌	SOOMHz Log				Log	jic Threshold 🚽 1.50v			Pre-Trigger Buffer 🗾 50%			
]	•			
	Signal	Wire	Wire	Edge	Cursor	Cursor	-80ns	-60	Ins	-40ns	-20ns	T+0	+20ns
	Jigha	ID	Status	A	В	A						, <u>,</u> , ,	
	TMRO_O	DO	L	t	0	0							1
	TMR1_0	D1	L	t	0	0							
	TMR2_0	D2	L	t	0	0							
	TMRO_1	D3	L	t	0	0							
	TMR1_1	D4	L	t	0	0							
	TMR2_1	D5	L	t	0	0							
	NONZERO_0	D6	Н	ļ	1	1							
	NONZERO_1	D7	Н	ļ	1	1							

Initial Phase Test Parameters

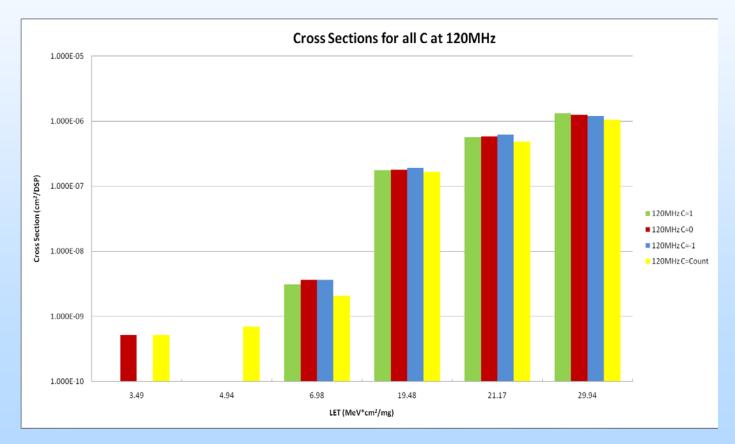
- For first round of testing, A_i, B_i set to counter for all cases
 - Each clock cycle, A and B parameters increment by 1
- C parameter remained variable
- Test matrix:

1 MHz	15 MHz	30 MHz	60 MHz	120 MHz
C=0	C = 0	C = 0	C = 0	C = 0
1 MHz	15 MHz	30 MHz	60 MHz	120 MHz
C = +1				
1 MHz	15 MHz	30 MHz	60 MHz	120 MHz
C = -1				
1 MHz	15 MHz	30 MHz	60 MHz	120 MHz
C = count				


Heavy Ion Testing at LBNL

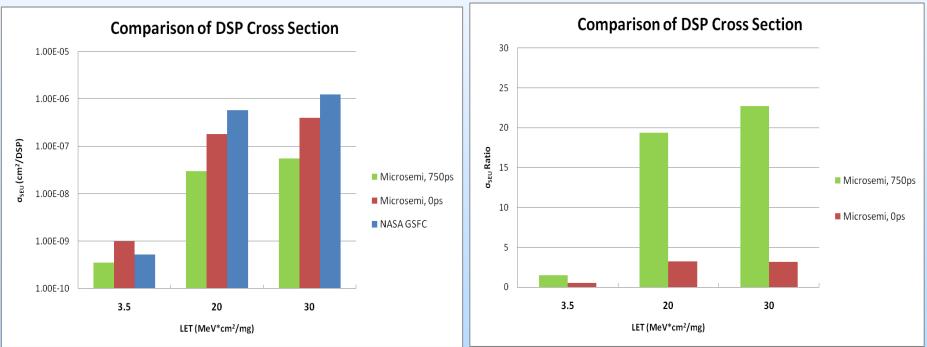
- Energy : 15 MeV
- Fluence : up to 4.0E+7, OR until significant number of upsets observed
- Fluxes
 - 2.0E+5 to 2.3E+5 : Ne
 - 9.7E+4 to 1.1E+5 : Ar
 - 7.0E+4 to 1.0E+5 : Cu
- Angles of incidence tested : 0°, 45°, and 60°
- Effective linear energy transfer (LET) values tested : 3.94 to 29.94 MeV·cm²/mg

Initial Phase Heavy Ion Test Results: SEU cross section (σ_{SEU}) Frequency Effects



- σ_{SEU} increases as frequency increases
- At low LET values, SEUs are minimal with low frequency operation
- As frequency increases, SEUs become more apparent

Initial Phase Heavy IonTest Results: Coefficient Effects


- Choice of C parameter does not appear to have significant effect on σ_{SEU}

Comparison of NASA Radiation Effects and Analysis Group (REAG) results with Microsemi results

- At low LET, results are statistically similar
- As LET increases, differentiation becomes more pronounced

Source for Microsemi data: IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010, pp. 3537-3546

Are SETs effectively being filtered by delay chain of 750ps and guardgate?

σ_{SEU} Analysis Using NASA REAG SEU **Model**

NASA REAG SEE Model for FPGAs

Probability for Design Specific system SEU

 $P(fs)_{error} \propto P_{Configuration} + P(fs)_{functionalLogic} + P_{SEFI}$ Probability forProbability forConfiguration SEUFunctional logic

Functional logic SEU

Probability for Single Event **Functional** Interrupt

For RTAX-DSP target device...

 $P_{configuration} \rightarrow 0 \quad P_{SEFI} \rightarrow low \quad P_{DFFSEU} \rightarrow 0$

$$P(f_s) \propto P(f_s)_{SET \rightarrow SEU} \propto \sum_{i=1}^N P_{gen}(i) \times P_{prop}(i) \times \tau_{width}(i) \times f_s$$

Next Phase of Testing

- Future testing to validate expected cross section saturation and threshold LET
- May limit testing to worst-case conditions (120 MHz) to increase data points
- Test at higher LETs to observe if any potential DSP functional interrupts or global functional interrupts
- Test at all other input conditions (A_i, B_i coefficients set static instead of dynamic)

Acknowledgements/Closing

- RTAX-DSP FPGA devices remain good choice for designers of DSP algorithms targeting FPGAs for space
- All upsets observed appear to stem from transient capture at output registers of DSP cores
- How effective is the implemented temporal filter for the DSP blocks?
- I'd like to thank Melanie Berg, Mark Friendlich, Hak Kim for their expertise, assistance during test planning, design, execution, and analysis
- Questions?