ReSpace/MAPLD 2011 Presentation Sandia Rad-Hard, Fast-Turn Structured ASIC The ViArray

August 23, 2011

K. K. Ma, John Teifel, Richard S. Flores Advanced Microelectronics & Radiation Effects Sandia National Laboratories MS 1072, P.O. Box 5800, Albuquerque, NM 87185 (505) 844-6469 makk@sandia.gov

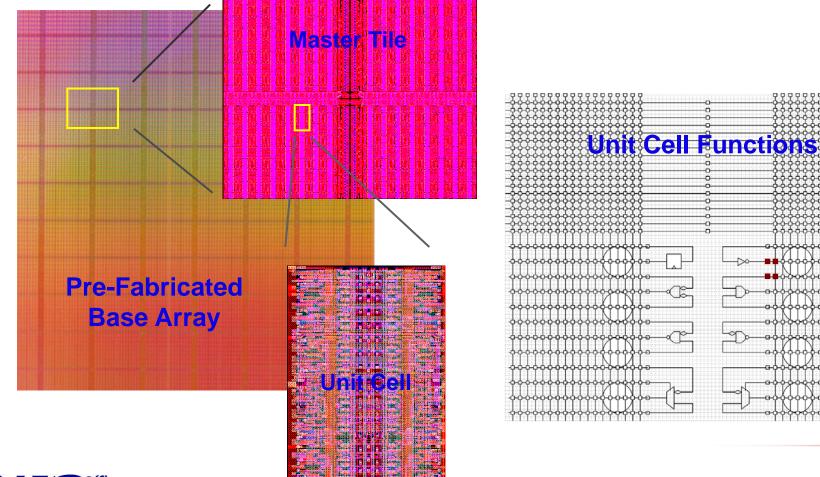
Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Motivation of ViArray development
- ViArray architecture and platforms
- ViArray features
- Trusted ViArray
- Future direction
- Conclusion

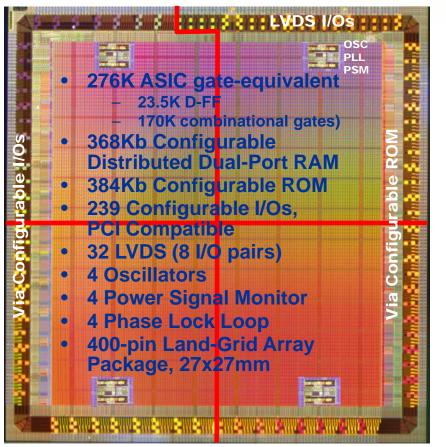
Motivation of ViArray Development

- Sandia's Microelectronics Program provides high-reliability, radiation-hardened Application Specific Integrated Circuits (ASICs) for system applications. Typical customer has
 - Multi-year development program with spiral design process
 - Low-volume production requirement, if any
- The schedule to design, layout, fabricate and package a cellbased ASIC is long, and the development cost is escalating.
- \Rightarrow Designers using FPGAs for design iterations
- \Rightarrow FPGA to ASIC conversion issues


We need a faster and cheaper way to design and develop ASICs

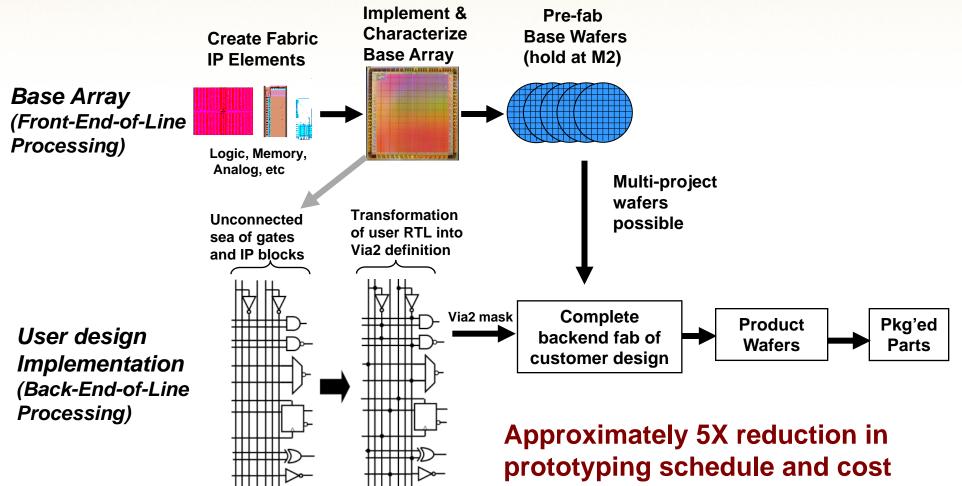
ViArray Architecture

- Structured architecture
- Pre-fabricated base-array of repetitive functional fabrics
- Pre-determined vertical and horizontal signal routing channels
- One-mask metal-via configuration based on ViASIC[®] ViaMask[™]



ViArray Platforms

Eiger – A Digital ViArray Platform

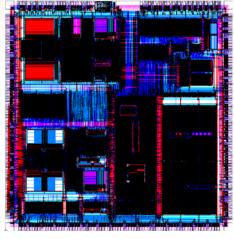

Whistler – A Mixed-Signal ViArray Platform

10	na ang ang ang ang ang ang ang ang ang a	LVDS I/Os
jurable I/Os	Analog Elements - 4 Cyclic ADC - 4 Pipeline ADC - 8 8-bit DAC - 9 32-channel MUX - 48 Generic amplifiers - 64 Generic comparators	• Digital Elements - 138K ASIC gate- equivalent - 184Kb Configurable Distributed Dual-Port RAM
Via Config	 128 Analog switches 4 Band gap voltage reference 1 High-speed S/H 2 Temperature sensors 2K ohm resistors 2pf MIM capacitors 	Configurable E ROM • 239 Configurable

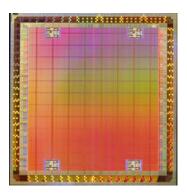
ViArray Implementation Flow

prototyping schedule and cos compared to cell-based ASIC approach

ViArray vs. Cell-based ASIC Comparison – Speed


ViArray Operating Speed

- For pipelined logic circuits with no static random access memories (SRAMs)
 - up to 100 MHz
- For pipelined logic circuits with SRAM
 - Up to 50 MHz
- Cell-based ASIC and ViArray have comparable speed because they have similar cell performance
- It is possible to operate at a higher speed with highly customized ASIC design

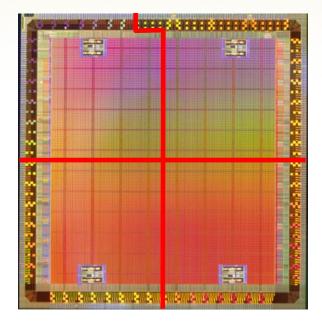


Cell-based ASIC vs. ViArray Comparison – Density

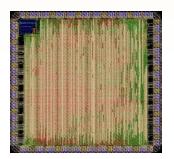
Typical Sandia CMOS7 0.35 μm rad-hard SOI cell-based ASIC density

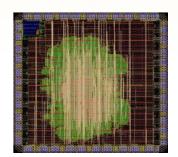
• Logic: 8K – 10K gate equivalent per mm²

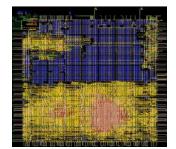
Sandia CMOS7 0.35 μ m rad-hard SOI Eiger ViArray density

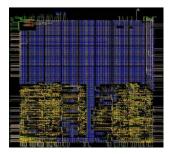

 3.1K gate equivalent + 4.1Kbits Distributed DP RAM per mm²

Cell-based ASIC and ViArray have comparable transistor density

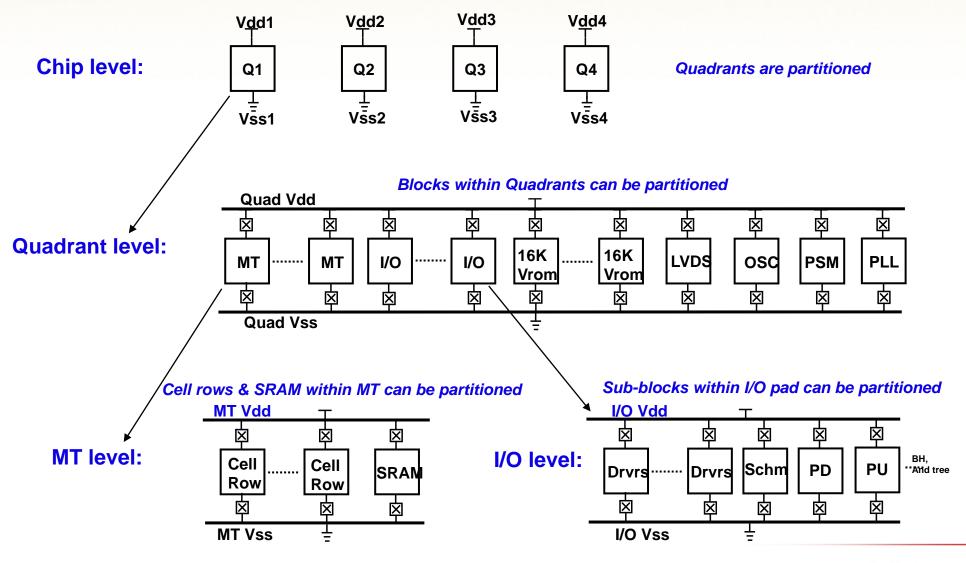



ViArray Power Management Features – Power Partitioning




- Power sequencing
- Redundancy
- Sleep-mode operation
- Multiple applications

Examples

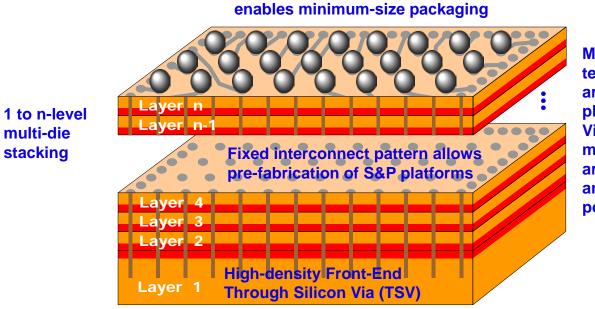


ViArray Power Management Features – "Off-grid" Unused Resources

Trusted ViArray

The ViArray has an open architecture with

- highly compacted and optimized repetitive functional fabrics that are tightly laid out. Minor modifications could affect the overall layout.
- fine-grain configurable architecture. Resources in the ViArray are uncommitted until implementation of a specific application, i.e., until via-2 mask is defined.
- power management features. Resources in the ViArray may not be connected to power and ground.
- ⇒ The ViArray could achieve certain degree of trustworthiness even if the base-array is fabricated in an uncontrolled environment, IF back-end-of-line fabrication for specific application is controlled.



Future Direction

- Additional ViArray Platforms
 - Increase resources
 - Special applications in extreme radiation environment

Redistributed I/Os to Area Array

- Precision analog functions
- Stack & Pack

Multi-function, multitechnology, multiarchitecture S&P platforms – ViArrays, memories, 3D multi-core processor architecture, precision analog, HBTs, MEMS, power devices...

Conclusion

- Beginning in 2004, Sandia has developed the ViArray family of structured ASIC base arrays for its internal 350-nm radiation-hardened SOI foundry
- The ViArray architecture is highly efficient, competitive to custom designed cell-based ASIC in speed, power, and circuit density
- The ViArray has unique features to enhance power management, reliability and redundancy architecture for embedded applications
- The ViArray could achieve certain degree of trustworthiness even when the base arrays are fabricated in an uncontrolled environment
- The ViArray implementation approach achieves approximately 5X reduction in schedule and NRE costs compared to cell-based ASIC
- Sandia has a long-term plan to support the ViArray product family

