ReSpace/MAPLD 2011

ReSpace Track Overview

Elihu McMahon
Jet Propulsion Laboratory
Elihu.H.McMahon@jpl.nasa.gov
MAPLD vs. ReSpace Community

- MAPLD = Conservative (low risk, high reliability, high $ missions)
- ReSpace = Edgy (higher risk, lower reliability, low $ missions)
- Although MAPLD and ReSpace appear to be at opposite ends of the spectra, we do share some common ground.
Rethinking Space Electronics

• ReSpace (Revolutionary Electronics in Space) explores the most effective manner in which new technologies or technologies that are new to space are revolutionizing our business.

• This includes the use of:
 – Novel implementations of commercial electronics that enable the development of increasingly capable, compact and low cost spacecraft.
 – Reconfigurable electronics and microsystems.

• ReSpace addresses the underlying electronics, components, and systems technologies, which enable this revolution.
• **ReSpace** takes a look at bold operational concepts:
 – Novel approaches to space effects mitigation
 – Implementing “big” missions with small spacecraft (imaging, radar, etc.)
 – Systems engineering and design tools capable of demonstrating the lifetime cost, reliability, and performance impact of reconfigurable microsystems on spacecraft and constellations.

• **Practical modularity and innovative modules:**
 – Space Plug-and-Play (SPA) and related standards
 – Physical standards and interface standards
 – New compact spacecraft modules for attitude determination and control
 – Power generation and energy storage solutions
 – Software defined radios
2011 Session Overview

- **Session A: Onboard Processing**
 - Multicore systems, commercial processors and DSPs, etc.
 - Creating more efficient, scalable architectures
 - Integration of electronics hardware with software

- **Session B: New Technologies**
 - RHBD components and their applications
 - Extreme environment tolerant electronics
 - Miniaturized electronics for space

- **Session C: Missions and Systems**
 - Interplanetary use of small satellites
 - Reconfigurable and shape-changing systems
 - System Design using Space Plug-and-Play (SPA)
Session Structure

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Time</th>
<th>Session Chairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Onboard Processing</td>
<td>Wed 8:00–10:20AM</td>
<td>Mr. Rafi Some, Jet Propulsion Laboratory
Dr. Yutao He, Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>B</td>
<td>New Technologies</td>
<td>Wed 1:00-5:25PM*</td>
<td>Mr. Anthony Lai, Ensign-Bickford Aerospace and Defense Company
Dr. Jim Lyke, Air Force Research Laboratory</td>
</tr>
<tr>
<td>C</td>
<td>Missions and Systems</td>
<td>Thur 8:00-11:20AM</td>
<td>Dr. Steve Horan, NASA Langley Research Center
Dr. Adrian Stoica, Jet Propulsion Laboratory</td>
</tr>
</tbody>
</table>

* Note that Session B will end 25 minutes early than stated in the program.
• Session B will end 25 minutes early than stated in the program.

• The last presentation from ReSpace Session B, “Reconfigurable Space Weather and Space Situational Awareness (SSA) System Leveraging New Technology Detectors” has been moved to Session C to replace “Modular Latvian Nano Satellite VENTA-1 with the Payloads from Germany, Luxembourg, Sweden and the USA” due it’s cancellation.
Lunch will be served next in the Ballroom

MAPLD Session A begins after lunch at 1 pm