

ReSpace/MAPLD 2011 ReSpace Track Overview

Elihu McMahon

Jet Propulsion Laboratory

Elihu.H.McMahon@jpl.nasa.gov

MAPLD vs. ReSpace Community

- MAPLD = Conservative (low risk, high reliability, high \$ missions)
- ReSpace = Edgy (higher risk, lower reliability, low \$ missions)
- Although MAPLD and ReSpace appear to be at opposite ends of the spectra, we do share some common ground.

- ReSpace (Revolutionary Electronics in Space) explores the most effective manner in which new technologies or technologies that are new to space are revolutionizing our business.
- This includes the use of:
 - Novel implementations of commercial electronics that enable the development of increasingly capable, compact and low cost spacecraft.
 - Reconfigurable electronics and microsystems.
- ReSpace addresses the underlying electronics, components, and systems technologies, which enable this revolution.

Rethinking Space Electronics cont.

- ReSpace takes a look at bold operational concepts:
 - Novel approaches to space effects mitigation
 - Implementing "big" missions with small spacecraft (imaging, radar, etc.)
 - Systems engineering and design tools capable of demonstrating the lifetime cost, reliability, and performance impact of reconfigurable microsystems on spacecraft and constellations.
- Practical modularity and innovative modules:
 - Space Plug-and-Play (SPA) and related standards
 - Physical standards and interface standards
 - New compact spacecraft modules for attitude determination and control
 - Power generation and energy storage solutions
 - Software defined radios.

2011 Session Overview

- Session A: Onboard Processing
 - Multicore systems, commercial processors and DSPs, etc.
 - Creating more efficient, scalable architectures
 - Integration of electronics hardware with software
- Session B: New Technologies
 - RHBD components and their applications
 - Extreme environment tolerant electronics
 - Miniaturized electronics for space
- Session C: Missions and Systems
 - Interplanetary use of small satellites
 - Reconfigurable and shape-changing systems
 - System Design using Space Plug-and-Play (SPA)

ReSpace Track Structure

Session	Title	Time	Session Chairs
A (Combined)	Onboard Processing	Wed 8:00-10:20AM	Mr. Rafi Some, Jet Propulsion Laboratory Dr. Yutao He, Jet Propulsion Laboratory
В	New Technologies	Wed 1:00-5:25PM*	Mr. Anthony Lai, Ensign-Bickford Aerospace and Defense Company Dr. Jim Lyke, Air Force Research Laboratory
С	Missions and Systems	Thur 8:00-11:20AM	Dr. Steve Horan, NASA Langley Research Center Dr. Adrian Stoica, Jet Propulsion Laboratory

^{*} Note that Session B will end 25 minutes early than stated in the program.

- Session B will end 25 minutes early than stated in the program.
- The last presentation from ReSpace Session B,
 "Reconfigurable Space Weather and Space Situational
 Awareness (SSA) System Leveraging New Technology
 Detectors" has been moved to Session C to replace "Modular
 Latvian Nano Satellite VENTA-1 with the Payloads from
 Germany, Luxembourg, Sweden and the USA" due it's
 cancellation.

Lunch will be served next in the Ballroom

MAPLD Session A begins after lunch at 1 pm