
Agile Design Practices and High-Level
Verification for Spacecraft Electronics

Workshop

Moderator:
Tim Gallagher

Lockheed Martin

9/9/2011

Workshop Agenda
15:50 – 16:00 Tim Gallagher Intro

16:00 – 16:07 Tim Gallagher Agile Design
16:07 – 16:14 Mike Wirthlin Rapid Design
16:14 – 16:21 Mir Sayed Ali HLS for DSP
16:21 – 16:28 Doug Krening SystemVerilog
16:28 – 16:35 Mike Horn OVM/UVM
16:35 – 16:42 Doug Johnson Virtual Proto
16:42 – 16:49 JP Walters FT Verification

16:49 – 17:09 Panel Session
17:09 – Audience Q&A

9/9/20112

Presenters and Panel Members
• Tim Gallagher on Agile Design

o LM Fellow, Reconfigurable Computing Technologies
Lockheed Martin Space Systems Company

o Principal Investigator SSC SW Multi-Core Research
o Agile Design Practices and Processes for FPGAs
o Joint RTL and High-Order Language (HOL/ESL)

Based Development Methodologies

9/9/20113

Presenters and Panel Members
• Dr. Mike Wirthlin on Rapid Design

o Associate Professor ECE, Brigham Young University
o Associate Director of the BYU Configurable

Computing Laboratory
o Faculty Advisor in the NSF Center for High-

Performance Reconfigurable Computing (CHREC)
o Principle Investigator, DARPA Study on FPGA Design

Productivity
o Research Interests

• Fault Tolerant FPGA design and reliable FPGA computing
• FPGA Design Productivity

9/9/20114

Presenters and Panel Members
• Mir Sayed Ali on HLS for DSP

o Sr. Staff Applications Engineer Microsemi Corp
o 11 years experience in the areas of FPGA design,

verification and implementation
o Expertise on Microsemi IPs for space applications

such as 1553, PCI and DSP
o Master’s degree in Electrical Engineering from

University of Oklahoma, Norman, USA
 “Digital Signal Processing (DSP) Design Flow and

Design Techniques Using RTAX-DSP FPGAs” Thur
8:50 MAPLD Session C

9/9/20115

Presenters and Panel Members
• Doug Krening on SystemVerilog

o Advanced Functional Verification utilizing
SystemVerilog Consultant

o Currently: Supporting Lockheed Martin / GOES-R
• Verification Methodology Development
• Verification Team Training
• FPGA Verification

o Previously:
• President / Principal Engineer, FirstPass Inc
• Director / Principal Engineer, Vitesse Semiconductor

9/9/20116

Presenters and Panel Members
• Mike Horn on OVM/UVM

o Principal Verification Architect Mentor Graphics
o Primary responsibility to help organizations deploy

UVM and OVM
o One of the authors of the UVM/OVM Online

Methodology Cookbook
• http://verificationacademy.com/cookbook/

o Used High-level Verification Languages (HVL) since
1999 including Specman E, Vera and SystemVerilog

 “Applying OVM (UVM) to GOES-R C&DH
Development” Wed 13:50 MAPLD Session B

9/9/20117

Presenters and Panel Members
• Doug Johnson on Virtual Prototyping

o Staff Applications Consultant at Synopsys, Inc.
o 30+ years of industry experience in communication

design engineering, electronic design automation
(EDA) tools, applications engineering, digital signal
processing (DSP), intellectual property (IP) licensing
and account management

o BSEE from the University of Illinois at Urbana-
Champaign.

9/9/20118

Presenters and Panel Members
• John Paul Walters on Verifying Fault Tolerance

o USC/ISI Computer Scientist, Adaptive Parallel
Execution Group

o Research interests include fault tolerance and
reliability, HPEC, multi-core processing

o Co-developed Virtex-4 fault injector
o Co-developed SpaceCube software fault tolerance

layer
 “Radiation Hardening of FPGA-embedded CPUs via

Software, Validated with Fault Emulation” Wed 13:25
MAPLD Session B

9/9/20119

Applying Agile Software Techniques
to Hardware Design (FPGA)

Tim Gallagher
Space Systems Company

© 2011 Lockheed Martin Corporation. All Rights Reserved.

11

Agile Design for Hardware
• Why?

– Multiple programs with “red” FPGA deliveries
• Reprogrammability has made designers lazy

– Design as quickly as possible, troubleshoot in-circuit
» Just throw together some code and hope it all works
» Spend little time on design architecture and analysis

– Multiple Synthesis, Place & Route, Debug cycles
» Place & Route runs can take days on tough designs
» Difficult to debug in-circuit with today’s complexity

– Need a “one time to get it right” approach!
• Agile sets the attitude for error free designs!

Cost, schedule, customer satisfaction issues!

12

Agile Design for Hardware
• What?

– Agile Development Methods
• Rapid, short iteration design cycle

– Concurrent development and rapid-turnaround
between HW, SW, Systems, and Verification Teams

– Delay decisions and deliver code whenever possible
• Test Driven Design (TDD)

– Verification team drives requirements, architecture,
and design

• High-Level Verification
– Independent design and verification teams
– Different tools, languages, and methods to enforce

isolation of efforts

13

Agile Design for Hardware
• What?

– Agile Development Methods
• Static Analysis

– Eliminate tedious line-by-line reviews
• Design Patterns

– Templates for common design issues such as CDC,
interrupts, I/O links/buses

• Just-In-Time Training (JIT2)
– Training delivered when needed

• Metrics and Bug Tracking/Reporting
– Includes real-time response to issues

Proven Agile Techniques for Error Free Design

Reuse, Reuse, and More Reuse

Mike Wirthlin
Brigham Young University

NSF Center for High Performance Reconfigurable Computing (CHREC)

Presenters and Panel Members
• Dr. Mike Wirthlin,

o Associate Professor, Brigham Young University
(Department of Electrical and Computer Engineering)

o Associate Director of the BYU Configurable
Computing Laboratory

o Faculty Advisor in the NSF Center for High-
Performance Reconfigurable Computing (CHREC)

o Principle Investigator, DARPA Study on FPGA Design
Productivity

o Research Interests
• Fault Tolerant FPGA design and reliable FPGA computing
• FPGA Design Productivity

DARPA Study on FPGA Design Productivity

gcc –o netmon netmon.c –lpthread –lm –lc

C threads library:
285 functions defined

C math library:
400 functions defined

Standard C library:
2080 functions defined

DARPA Study on FPGA Design Productivity
• Reuse a key component of design productivity

• It is difficult to reuse
o Lack of documentation, test vectors, etc.
o Too specialized
o Not invented here (NIH)

Design Effort = Initial Design Effort × [(1-R) + (O × R)]
R: Fraction of design exploiting reuse
O: Overhead of reuse

Example: R = .8 (reuse 80% of the code), O=.1 (10% overhead for reuse)
Design effort with reuse = ¼ the design effort without reuse

“If the cost of reuse is more than 30% than the cost without reuse,
reuse will seldom occur”

Reuse RTL Code with Meta-Data (B1-09)
• Facilitate Automated Reuse

• Interface Synthesis

Loop Filter Parameterization
Accumulation Width 32

Loop Bandwidth 0.01

Loop Damping Factor 1.0

Phase Detector Gain 6.0

DDS Gain -1.0

Samples Per Symbol 2

K Precision 44

Order 2

error
signal

clk
ce
rst

signed

bit
bit
bit

estimatesigne
dbitvalidI

n

InterfaceCore
A

Core
B

Core
A

Core
B

Interface
Synthesis

Reuse Module Placement and Routing (B1-11)
Regular
Design

Hard
Macro
Design

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Ru
nt

im
e

(m
in

ut
es

)

Xilinx Flow

HMFlow

Reuse Bitstreams
• View pre-verified and mapped hardware circuits

as reuseable “chip”
• Compose systems through bitstream “plug and

play”

I/O

Debug

M
em

or
y

N
et

w
or

kUser
Design

Config
&
Clk

Power Matters.

High Performance RTAX-DSP Design
Using Synphony

Mir Sayed Ali
Application Engineering
August 2011

21

Topics

 RTAX-DSP Design Flow Overview
 Analyzing Architecture for Hand-Coded RTL
 Synphony Model Compiler Overview
 RTAX-DSP Design using Synphony AE
 Conclusion

22

RTAX-DSP Design Flow Overview

Algorithm
Design RTL Coding

A
rc

hi
te

ct
ur

e
Ex

pl
or

at
io

n
RTL Verification

Im
pl

em
en

ta
tio

n

Cycle by cycle
functional debug

For single architecture onlylimited

Traditional Flow

Algorithm
Design

High-Level

Block Design

1 2 3
RTL

Verification
Im

pl
em

en
ta

tio
n

Synphony Flow

Better Designs,

Faster

Faster verification, zero RTL-debug
Testbench generation for HW verification

C-model generation

Efficiently
evaluate multiple

architectures

RTL automatically generated

Faster design at
higher

abstraction level
using HLS IP

23

Analyzing Architecture for Hand-Coded RTL

 Hand-coding RTL is time consuming
 Limited ability for the designer to fully explore the design space.

• Example: A FIR filter can be implemented in various ways and with various pipeline
options (Ref: Ramsey Hourani, Ravi Jenkal, W. Rhett Davis, Winser Alexander
“Automated Design Space Exploration for DSP Applications” Journal of Signal
Processing Systems Volume 56, Numbers 2-3, 199-216, DOI: 10.1007/s11265-008-
0226-2)

24

Synphony Model Compiler Overview

Quickly create synthesizable multi-rate
algorithms using optimized IP model library

 Verify & validate early using Simulink®

simulation and debugging

Globally optimize IP and system
architectures using high-level synthesis

 Achieve superior QoR with high quality RTL
optimized for ASIC and FPGA

User-Specified
Directives

IP Model
Library

RTL for multiple
architectures
and targets

Implementation with automatically optimized
system-wide architecture and IP cores

fft C
S

filter

fft C
S

filter

fft B

filter

RTL Hardware
Verification

C-Models

Synphony Model Compiler
High-Level Synthesis

25

RTAX-DSP Design using Synphony AE

26

Conclusion

 Synphony allows Superior Simulink implementation flow
• Quickly create synthesizable multi-rate algorithms

– May need addition steps to convert encrypted RTL
– May not always give higher performance compared to Hand_coded RTL

• Higher capacity and superior optimization technologies for FPGA
• Tight integration with Synplify (FPGA)
• Best ease-of-use, portability and also re-use

27

Functional Verification with
SystemVerilog

Panel Member:
Doug Krening

Advanced Verification Consultant

9/9/201128

Motivation
• FPGA/ASIC Design and Verification Reality

o Chip Complexity is Ever Increasing
• Verification Complexity Growth Outpaces Design

o High Quality, On Schedule, Within Budget ... or Fail

Design vs Verification

Design (30%)

Verification
(70%)

9/9/201129 Agile Design Practices and High Level Verification for Spacecraft Electronics Workshop

Project Management View
• Better, Faster, Cheaper – Pick Two?

o New Technology helps Solve the Dilemma
• Advanced Functional Verification Languages
• e -> Vera -> SystemVerilog

9/9/201130 Agile Design Practices and High Level Verification for Spacecraft Electronics Workshop

The Engineer’s View
• “Functional verification is a tedious, mind-numbing

task.”
Doug Krening, c2000

• “Functional verification is awesome. I love breaking
a good design.”

Doug Krening, c2010

• The Difference? Advanced Verification Languages
o Old School == Lackluster Engineer
o Advanced == Enthusiastic Engineer

9/9/201131 Agile Design Practices and High Level Verification for Spacecraft Electronics Workshop

Organizational Implications
• Requires a Dedicated Verification Organization

o Engineers, Training, Methodology, etc.

Design Team

9/9/201132 Agile Design Practices and High Level Verification for Spacecraft Electronics Workshop

Universal Verification Methodology
(UVM) – Taking SystemVerilog to the

Next Level

Panel Member:
Michael Horn

Mentor Graphics

33

9/9/2011Footer Text34

Why Use a Standard Methodology?
• SystemVerilog is a huge language

o Data Types
o RTL constructs
o Classes/OOP
o Assertions

• Need to provide structure and guidance
o Limit the choices to improve reuse/interoperability
o Avoid chaos & repetition
o Provide off the shelf training and support options
o Most Important – Allow people to efficiently work

together

What is the UVM? • Universal Verification
Methodology

• Accellera industry standard for
verification methodology

• ARM, Aldec, AMD, Atrenta,
Cadence, Cisco, Cypress, Duolog,
Freescale, IBM, Intel, Jasper,
Magillem, Mentor Graphics, Nokia,
NXP, Oracle, Paradigm Works,
Qualcomm, Renesas, Semifore,
SpringSoft, ST Microelectronics,
Synopsys, Texas Instruments,
Verilab, Xilinx

• Reference Implementation
o SystemVerilog Base Classes
o Based on OVM2.1.1

35Footer Text

UVM Foundations
Objective Justification

38

• Separation of stimulus generation from
delivery

• Raise the abstraction level of stimulus
and checking

• Test bench configuration

• Interoperability
o Standard class library & API

• Reuse
o VIP
o Testbench components
o Stimulus

• Several people can develop stimulus
.

• Increase productivity
.

• Avoid expensive recompilation

• Important for intra and inter-company
development

• Key to productivity

Footer Text

Strategy

Spec
Verif Plan

VMteam, UVM Seminar, Apr 201139

Test Environment Test Stimulus

Analysis / Checking

Verification IP

Interfaces

in
te

rfa
ce

interface

driver

mon

seq

cov

vip coverage
database

Sequences

i/f
vip

i/f
vip

config

interface

co-verif

AP

mem model

in
te

rf
ac

e

scoreboard

model

checking

bus
vip

i/f
bus
vip

params

register
model

Config

cpu

cache

cpu

debug

bus / xbar

periph

x

usb gbit sata

dfi

ddr

gfx hdmi

lvds

rgb
v
i
d

phyphyphy

DUT / Connection

virtual
sequencer

Base Class Library

Methodology

40

Enabling Pre-Silicon
Hardware/Software Validation With

Virtual and FPGA Prototyping

ReSpace/MAPLD
August, 2011

Doug Johnson
Staff Applications Consultant

Synopsys, Inc.

41

FPGA

Standard Project Flow Without Prototyping

HW Development

Specification Freeze

RTL Block
Verification

FPGA Synthesis and PnR Project FinishedSilicon

Software Development & Validation

System IntegrationRTL SoC
Verification

Why Prototype?
Faster HW/SW Integration & System Validation

Reduced Development Time

Reduced Development Time with Prototyping

FPGA
HW Development

RTL Block
Verification

Project Finished

RTL SoC
Verification

Specification Freeze FPGA Synthesis and PnR Silicon

Virtual Prototyping

System Integration

Software Development & Validation

Software Development & Validation

System Integration

42

Virtual Prototyping Flow

VP
Assembly

Virtual Prototype Creation Virtual Prototype Use

Component
Modeling

Model
Libraries

VP
Debugging

VP
Packaging

VP
Executable

VP Debug
and

Analysis

Other
Simulators

Design
Tools

Software Development
on Embedded

Processors

Hardware
Verification – FPGA

Prototype

System Validation

Supply Chain
Enablement

Post Silicon
Validation

Synthesizable
C/C++/System

Algorithm Models

43

Virtual Prototype Creation

Graphical
Assembly

Debug: Source RTL Code and
SystemC/TLM Aware

Model Libraries
3rd Party Model Integration

Automated
Packaging

Algorithmic
Component

Modeling and
Implementation

Automation

High-Level
Synthesis -
Component

Creation

• Exploit C-Synthesis for
algorithmic, DSP and
communications modules

• Exploit FPGA processors,
interconnect, peripherals and
platform models

• Support for standard based
technologies SystemC/TLM
2.0

• Efficient graphical assembly
of virtual prototypes

• Support for fast simulation at
multiple abstraction levels

44

Virtual Prototype Use

• Advanced software debugging
and analysis tool for virtual
prototypes

• Synchronized integration and
execution with 3rd party SW
debugging tools (ARM, GDB..)

• RTL Co-Simulation for system
level validation

• FPGA Prototyping for real-world
hardware/software validation

Fast SW
Accurate

Simulation

Platform Level
SW Debug

Platform
Level
HW/SW
Analysis

Platform Level
SW Analysis

Synchronized SW
Source debugging

RTL
Simulators

Physical
System Sim

FPGA
Prototyping

Test
Benches

Co-Simulation and External Connectivity Interfaces

45

• SCC synthesizes untimed C/C++ code into timed RTL code for implementation
• Three verification levels within SCC and Virtual Prototyping tools

– Golden: Simulates synthesizable C/C++ code and compares to the reference vectors
– Lint: Checks for common coding errors such as overflow and out-of-bounds
– RTL: Checks exact performance and verifies results match reference

• Designer can quickly verify system-level test vectors
– Coarse-level vectors created to verify system-level functionality
– Designer can quickly additional vectors to apply to RTL and FPGA prototype

• Virtual prototyping tools provide detailed graphical views and reports for debug if any
simulation fails at any level of abstraction

– High-level models
– RTL
– FPGA prototype with co-simulation interfaces

Synphony C Compiler Designer for Algorithmic Model
Development

Golden
simulation

(SCC)

Design
(C/C++)

Testbench
(C/C++)

Lint
simulation

(SCC)

RTL
simulation

(SCC/VCS)

Debug in Virtual Prototyping Platform and/or FPGA Prototype

HW Designer
(algorithm block)

Architect

46

Advantages of FPGA and Virtual Prototyping
High-Level Synthesis

Co-Simulation with VCS

Links to Virtual Prototyping
Higher Performance
& Earlier Validation

Synphony C Compiler
High-Level Synthesis

FPGA Prototyping for
At-Speed Testing with
Real-World Interfaces

47

Predictable Success

Fault Tolerance Verification
Through Software Fault Injection

John Paul Walters

USC/ISI

49

FPGAs have evolved, becoming heterogeneous
Hard core processors, Ethernet cores, Giga-bit transceivers

FPGA Embedded PowerPC outperforms radiation
hardened RISC processors

Legacy features
(known mitigation
techniques)

New features

Xilinx V5FXT Datasheet

How can we test the fault response of the embedded PowerPCs?

Processor Mongoose V RAD6000 RAD750 Virtex4 PPC405 Virtex 5 PPC440

Dhrystone MIPS 8 35 260 900 2,200

FPGAs Today

50

Software Fault Tolerance vs.
Traditional Mitigation

Duplication TMR QMR

• Software-based approach
leverages additional
hardware for useful
computation

• Heartbeats and assertions
cause minimal overhead

• Checkpoints are taken
according to the expected
upset rate

Software fault tolerance allows more computation and fewer wasted cycles

51

Evaluating Fault Tolerance

 Several options:
radiation testing, laser
testing, software fault
injection

 Software provides a
low-cost way of
evaluating fault
tolerance at-speed

 We can now inject
faults into registers,
caches, memories
through software

52

Summary and Open Questions

 Devices and software are becoming more complex
 Current strategies don’t scale
 Start to push fault tolerance to the application-level

 We can help to provide some fault tolerance constructs
 Checkpointing, heartbeats, control flow assertions, etc.

 Programmers must leverage application-specific details
 Improve application efficiency
 Improved detection

 Software fault injection is becoming more rigorous
 Complements radiation and laser testing strategies
 Level of fault detail much higher than radiation and laser testing
 Inexpensive – can inject faults over days, weeks costing only board time

 Further work is needed to correlate software fault injection to
radiation and laser results.

	�Agile Design Practices and High-Level Verification for Spacecraft Electronics Workshop
	Workshop Agenda
	Presenters and Panel Members
	Presenters and Panel Members
	Presenters and Panel Members
	Presenters and Panel Members
	Presenters and Panel Members
	Presenters and Panel Members
	Presenters and Panel Members
	Applying Agile Software Techniques to Hardware Design (FPGA)
	Agile Design for Hardware
	Agile Design for Hardware
	Agile Design for Hardware
	Reuse, Reuse, and More Reuse
	Presenters and Panel Members
	DARPA Study on FPGA Design Productivity
	DARPA Study on FPGA Design Productivity
	Reuse RTL Code with Meta-Data (B1-09)
	Reuse Module Placement and Routing (B1-11)
	Reuse Bitstreams
	High Performance RTAX-DSP Design Using Synphony
	Topics
	RTAX-DSP Design Flow Overview
	Analyzing Architecture for Hand-Coded RTL
	Synphony Model Compiler Overview
	RTAX-DSP Design using Synphony AE
	Conclusion
	�Functional Verification with SystemVerilog
	Motivation
	Project Management View
	The Engineer’s View
	Organizational Implications
	�Universal Verification Methodology (UVM) – Taking SystemVerilog to the Next Level
	Why Use a Standard Methodology?
	What is the UVM?
	UVM Foundations
	Slide Number 39
	�Enabling Pre-Silicon Hardware/Software Validation With Virtual and FPGA Prototyping
	Slide Number 41
	Virtual Prototyping Flow
	Virtual Prototype Creation
	Virtual Prototype Use
	Synphony C Compiler Designer for Algorithmic Model Development �
	Advantages of FPGA and Virtual Prototyping
	Slide Number 47
	Fault Tolerance Verification �Through Software Fault Injection
	FPGAs Today
	Software Fault Tolerance vs. Traditional Mitigation
	Evaluating Fault Tolerance
	Summary and Open Questions

