
Radiation Hardening of FPGA-
embedded CPUs via Software, 
Validated with Fault Emulation 

John Paul Walters, Kenneth M. Zick,
Matthew French

USC/ISI



FPGAs Today

FPGAs have evolved, becoming heterogeneous
— hard CPU cores, Ethernet cores, Giga-bit transceivers

FPGA Embedded PowerPC core outperforms radiation 
hardened RISC processors

Legacy features 
(known mitigation 
techniques)

New 
features

Xilinx V5FXT Datasheet

Can RHBSW techniques be developed for hard CPU cores?

Processor Mongoose V RAD6000 RAD750 Virtex4 PPC405 Virtex 5 PPC440

Dhrystone MIPS 8 35 260 900 2,200

2



Existing Embedded PPC 
Fault Tolerance Approaches

Problem: PowerPC state is dynamic & cannot be 
protected by configuration bit scrubbing

• Fault injection not feasible by this method either

Quadruple Modular Redundancy
• 2 Devices = 4 PowerPC cores
• Vote on result every clock cycle
• Fault detection and correction
• ~300% Overhead

Dual Processor Lock Step
• Single device solution
• Error detection only
• Checkpointing and Rollback to return to last known 

safe state
• 100% Overhead
• Downtime while both processors rolling back

3
New fault tolerance techniques and validation methods must 

be researched.

Voter

Checkpoint 
and Rollback 

Controller

QMR Approach

Dual Lock Step Approach

3



High Performance Computing 
Insights

HPC community has similar problem
• 100’s to 1000’s of nodes
• Long application run times (days to weeks)
• A node will fail over run time

HPC community does not use TMR
• Too many resources for already large,

expensive systems
• Power = $

HPC relies more on periodic checkpointing
and rollback

Can we adapt these techniques for 
embedded computing?

• Checkpoint frequency
• Checkpoint data size
• Available memory
• Real-time requirements

Cray HPC System

4



Fault Tolerance Strategies

Current system consists of:
• Checkpoints, control flow assertions, and heartbeats.

Checkpoint/rollback
• Used to react to a detected fault.

Control flow assertions
• Detect errors in control flow at the application-level.

Heartbeat monitoring
• Detect “liveness” of a PPC.

5



Checkpoint and Rollback

User-level checkpoint/rollback
General purpose
Provides user-defined 

callbacks
• Helpful for graceful cleanup of files, 

networks, FPGA fabric

Enables rapid context 
switching

t

Checkpoint time

Checkpoint interval

Balance checkpoint interval to upset 
rate

User source code

Checkpoint
library

Application-agnostic
checkpointing library

Self-
checkpointing

application

• User links in checkpoint library

• Library provides checkpoint() and 
restart() functions

• User inserts calls to checkpoint() at 
desired location(s)

• Checkpoint to DRAM, BRAM, or 
compact flash

6



• Heartbeats are generated by an FPGA 
based timer interrupt

• Each Heartbeat includes at least the 
following:
• Destination ID / Source ID (1 

byte)
• Message Number (1 byte)
• Message Type (1 byte)

• Heartbeats output when:
• Program Starts
• Program Ends
• Autonomous Events
• User-defined interval

// On a Timer Interrupt
msg[0] = (PPC_ID<<4) |

RAD_HARD_ID;
msg[1] = heartbeat_number++;
msg[2] = HEARTBEAT_TYPE;
msg[3] = DATA_LENGTH_ZERO;
Send_Message(msg);

Heartbeats

7



Control Flow Assertions

Tag blocks of code with 
signatures

As code progresses check 
signatures against 
expected value

Programmer indicates where 
to put assertions

x = 50;
if (condition == 1)

new_x = x-5;
else

new_x = x – 3;
z = new_x – x;

Original Code

ES_1 = ES_1 ^ 01;
x = 50;
if (condition == 1)
{

ES_1 = ES_1 ^ 010;
new_x = x-5;

}else{
ES_1 = ES_1 ^ 010;
New_x = x – 3;

}
ES_1 = ES_1 ^ 0100;
if (ES_1 != 0111) error();
z = new_x – x;

Transformed Code

• When an error is detected, alert 
heartbeat and initiate a rollback.

• Coordinate rollback/restart with 
2ndPPC if necessary.

8



Test Application

Combine the major 
elements of SAR and 
hyperspectral and loop 
infinitely over the 
computation.

From SAR we use FFT and 
complex multiply.

Use thresholding over the 
resulting FFT/complex 
multiply.
— Representative of a 

common hyperspectral
classifier.

Compare the results to the 
“golden” output after 
each computation.

Initialize

FFT

Complex 
Multiply

Threshold

Threshold

Compare

Initialize

FFT

Complex 
Multiply

fo
re

ve
r

Compute golden output

9



0%

20%

40%

60%

80%

100%

Baseline HB + Assertions All FT

Efficiency

100% 99.07% 98.7%

Efficiency of Fault Tolerance 
Implementation of Test 

Application

Efficiency = 

 

(TimeNoFT
TimeFT

) *100



Fault Injection and Future 
In-Situ Evaluation

Extensive verification through fault emulation, laser 
testing, and flight test.

On-orbit flight test on MISSE7 experiment
• PowerPC 405 core on commercial Xilinx Virtex-4FX device
• Using the Space Cube 1.0 platform.
• Currently uplinking to ISS
• Allocated a single PPC for test and a shared control PPC.

Fault emulation
• MSIS: Memory Sentinel and Injection System.
• In use currently to test registers and caches.
• Design closely mirrors the allocated MISSE7 V4-based design.

Laser test in September
• Will correlate fault emulation results with laser test results 

11



MSIS Design

MSIS software ISR (SW-MSIS) 
modifies the registers and 
performs setup of other 
corruptions
• Effective for SPR and GPR

MSIS configurable logic (HW-
MSIS) is responsible for 
generating periodic interrupts 
and monitoring/modifying 
PowerPC transactions
• Modify cache contents
• Protect memory regions

PowerPC

BRAMs

DDR2 UART …

HW-
MSIS

HW-MSIS 
monitor ring

PLB

SW-MSIS
(ISR)

PPC
IRQ

12



Current Test Data

Have compared our fault tolerant design to a base 
implementation with limited fault tolerance.

Both full injection (registers and cache) and registers-
only injection performed

Analyzed 15,000 injections for each injection campaign

14



Interpreting Fault Injection 
Data

We broadly classify injection results into 3 categories:
• Good data: an injection occurred and no failure was observed.
• Silent data corruption: an injection occurred which resulted in an 

incorrect value at the data comparison stage.
 Not currently distinguishing between persistent and transient errors

• Hang: an injection occurred which would typically hang the PPC.

In our FT design we add two subcategories:
• Recovery via rollback: an injection occurred that would have 

resulted in a PPC hang or silent data corruption, but we were 
able to roll back and recover from the error.

• Self-reset: an injection occurred that resulted in a processor 
hang, but the DUT’s watchdog timer detected the hang and 
reset the processor.

15



Full Injection Results

Result No FT (%) FT (%)

Good Data 86% 86.7%

SDC 6.8% 6.8%

Hang 7.2% 0%

Self-reset 0% 1.6%

Recovery via 
rollback 0% 4.9%

Total Good 86% 91.6%

0.1

1

10

100

1000

N
u

m
be

r 
of

 S
D

C
 e

rr
or

s

SDC Sensitivity

0.1

1

10

100

1000
N

u
m

be
r 

of
 P

ro
ce

ss
or

 H
an

gs

Hang Sensitivity

Assuming methods of detecting data 
corruption, we could reach up to 97.4% 
fault coverage using a cascading rollback.

16



Register-only Injection Results

Result No FT (%) FT (%)

Good Data 82.4% 78.8%

SDC 8.3% 8.9%

Hang 9.3% 0%

Self-reset 0% 5.0%

Recovery
via rollback 0% 7.3%

Total Good 82.4% 86.1%

0

20

40

60

80

100

120

140

r20 r27 r21 r19 r30 r16 r3 r15 r25 r14

N
u

m
be

r 
of

 S
D

C
 e

rr
or

s

SDC Sensitivity

0

50

100

150

200

250

300

350

r23 r22 PC LR SPR 
EVPR

r14 r28 r24 r19 r17

N
u

m
be

r 
of

 P
ro

ce
ss

or
 H

an
gs

Hang Sensitivity

Assuming methods of detecting data 
corruption, we could reach up to 95% fault 
coverage using a cascading rollback.

17



Fault Injection Summary 
Results

Our base techniques result in nearly 92% fault coverage 
with less than 2% execution time overhead.
• Area overhead: 64KB of BRAM for checkpointing, plus timer and 

interrupt controller in fabric for heartbeats
• Compared to TMR: 100% error coverage for ~200% area 

overhead.
With addition of data corruption detection we could 

achieve up to 97.4% fault coverage
• Current work targets low overhead application-specific error 

detection.

18



Next steps: laser testing

Validation of fault tolerance methods using pulsed-laser at 
Naval Research Lab
• Code runs on PowerPC 405 core in a commercial Virtex-4FX
• In addition to control flow assertions and heartbeat watchdog, 

we’ve developed low-cost self-checks for data corruption 

Laser testing allows more sophisticated fault model:
• Includes faults in non-SW visible state: CPU pipeline stages, 

instruction buffer, etc.
• Allows faults during application execution as opposed to pausing 

the application with an interrupt
• Includes single event transients as well as SEUs

Setup includes custom board, FPGA-FPGA interface, 
dynamic selection of single laser pulses using a shutter

19



SUMMARY

Developing a library of fault tolerance routines available 
to NASA community
• Targeted for science data processing

Initial tests promising
• Our fault tolerance approach introduces minimal overhead

Upgrading Fault Injection
• Developing new techniques to inject faults into the FPGA fabric 

within the MSIS system.

Test Plans
• Laser testing September 2011
• ISS testing on MISSE-7

20


	Radiation Hardening of FPGA-embedded CPUs via Software, �Validated with Fault Emulation 
	FPGAs Today
	Existing Embedded PPC Fault Tolerance Approaches
	High Performance Computing Insights
	Fault Tolerance Strategies
	Checkpoint and Rollback
	Heartbeats
	Control Flow Assertions
	Test Application
	Efficiency of Fault Tolerance Implementation of Test Application
	Fault Injection and Future In-Situ Evaluation
	MSIS Design
	Current Test Data
	Interpreting Fault Injection Data
	Full Injection Results
	Register-only Injection Results
	Fault Injection Summary Results
	Next steps: laser testing
	SUMMARY

