
Automated Code Reviews for
Fail-Safe Designs
MAPLD’2011

www.aldec.com

Agenda
• Fail-safe design assurance guidelines (DO-254)
• HDL coding in hardware design life cycle
• Automated HDL code reviews

2

www.aldec.com

Fail-Safe Design Assurance Guidelines
• RTCA/DO-254:
 Design assurance guidelines for

Airborne Electronic Hardware (AEH)
 Accepted by the Federal Aviation

Administration (FAA) in 2005
 The goal of the standard is to ensure that AEH works reliably
 Design Assurance Levels (DAL) A—E determine hardware design objectives
 DO-254 projects have special requirements for tools and design flows

3

www.aldec.com

DO-254 HW Design Assurance Levels
4

• Catastrophic – failure prevents the safe flight and landing of the aircraft,
resulting in many fatalities including the crew.A

• Hazardous – failure reduces capability of the aircraft to fly, possibly
resulting in fatal injuries but not to the crew.B

• Major – failure reduces flight safety margins and the capability of the
aircraft to the point where potential injuries could occur.C

• Minor – failure does not significantly reduce aircraft safety, resulting in
potential discomfort to passengers or crew.D

• No effect – failure does not affect the operation of the aircraft.E

• Design Assurance Levels (DAL):

www.aldec.com

DO-254 HW Design Life Cycle
• Design development activities and supporting processes:

5

Hardware Design Process
(Section 5)

• Req.
capture

Section 5.1

• Concept.
Design

Section 5.2
• Detailed

Design

Section 5.3

• Implement.

Section 5.4
• Product

transition

Section 5.5

Planning
(Section 4)

Supporting Processes
•Validation and Verification
•Configuration Management
•Process Assurance
•Certification Liaison

(Section 6)
(Section 7)
(Section 8)
(Section 9)

www.aldec.com

DO-254 and HDL Design
• HDL Design fits in the following sections of DO-254 Life Cycle:
 Creating HDL code (Section 5.3.2)

 Defining coding standards/policies (Section 6-2.a)

 Creating code artifacts and documentation (Section 10.3.2)

 Tracing code to requirements (Section 6.2.1)

 Managing code versions (Section 7.0)

 Performing internal reviews and external audits (Section 6.3.3.2)

6

www.aldec.com

Creating HDL Code

• HDL Design is a typical process for Detailed Design phase
• HDL describes functional behavior of the actual hardware
• Text-based entry method requires advanced editors to facilitate

design development

7

Section 5.3.2, Detailed Design Process Activities: The detailed design data for the hardware item
should be generated based on the requirements and conceptual design data. This may include assembly
and interconnection data, component data, HDL, test methods and hardware-software interface data.

HDL Editor Block Diagram Editor FSM Editor

www.aldec.com

Creating HDL Code Artifacts

• Code and implementation data must be documented
• Automatic HDL Code visualization is essential

8

Section 10.3.2, Hardware Design Representation Data is comprised of the set of drawings,
documents and specifications used to build the hardware item. Typical hardware design data:
conceptual and detailed design data, top-level and assembly drawings, verification and traceability data,
hardware acceptance criteria, problem reports, and etc.

Code2Graphics Export to PDF/HTML

www.aldec.com

Tracing HDL Code to Requirements

• Implementation = HDL Code => requirements must be linked to:
 HDL Code that implements the requirements
 Verification methods that verify them
 Verification results

• Linking is usually implemented
via HDL Code “tagging” at:
 Code level (more thorough tagging)
 Source file level

9

Section 6.2.1, Verification Process Objectives: The objectives of verification process are…
Traceability is established between hardware requirements, the implementation, and the verification
procedures and results.

REQ.1: ---------------
REQ.2: ---------------
...
REQ.N: ---------------

www.aldec.com

Managing HDL Code Versions

• Project needs to be managed through the design flow:
 Version management (SVN, Clearcase, etc)
 Defect tracking (Mantis, Bugzilla, JIRA, etc)

10

Section 7.0, Configuration Management Process is intended to provide the ability to consistently
replicate the configuration item, regenerate the information if necessary and modify the configuration
item in a controlled fashion if modification is necessary.

Version Management Bug Tracking

www.aldec.com

Performing Code Reviews and Audits

• Review session details (minutes, AIs) must be kept as a proof
• DO-254 project reviews:
 SOI-1: examination of planning documents
 SOI-2: design audit (after requirements, architecture, coding, and other internal reviews are done)

11

Section 6.3.3.2, Design Review: A design review is a method to determine that the design data and
implementation satisfy the requirements. Design reviews should be performed as defined in the plan at
multiple times during the hardware design life cycle. Examples are conceptual design, detail design and
implementation reviews.

Project Hierarchy Flow Diagrams Documentation

www.aldec.com

Defining HDL Coding Standards
12

• HDL code must adhere coding standards
defined by team

• Standards could be based on:
 Industry standards (e.g. STARC, RMM)
 Standards supplied by a vendor
 In-house company standards

Order 8110-105, Section 6-2.a, Verification Process: We must expect that, if they use an HDL,
applicants define the coding standards for this language consistent with the system safety objectives,
and establish conformance to those guidelines by HDL code reviews.

Standards

Industry

Popular:
RMM, STARC

Specified:
DO-254

In-house

www.aldec.com

Challenges in Establishing Standards
• HDL languages are very flexible and enable

for creativity in coding
• Certain coding styles and practices lead to:
 Problems in the downstream design phases
 In-hardware errors or malfunctions (safety threats!)

• What standards to select and deploy?
 FAA didn't set any formal HDL coding standards
 Traditional standards are generic (STARC, RMM)

 In-house standards may be impractical

13

Planning

HDL Coding

Other Stages
of Design Flow

Implementation

www.aldec.com

Checking HDL Coding Standards
14

• Manual vs. automatic reviews:

Hardware Design Processes, Order 8110-105, Section 6-2.a: We must expect that, if they use an
HDL, applicants define the coding standards for this language consistent with the system safety
objectives, and establish conformance to those guidelines by HDL code reviews.

Reviews

Manual

Automatic

?

www.aldec.com

Benefits of Automated Reviews
• Reduces cost of review vs. manual labor!
• Based on comprehensive knowledge base of

industry best practices and design expertise
• Code is more consistent and efficient vs.

manual review approach
• Reviews can be performed more often –

good match with DO-254 philosophy
• Integrated debug environment for efficient

design analysis and documentation

15

Planning

HDL Coding

Other Stages
of Design Flow

Implementation

www.aldec.com

Aldec DO-254 HDL Coding Standards
• Aldec DO-254 standard:
 Based on the feedback from real customers (DO-254 programs)

 Good foundation of guidelines for any design (Not DAL A/B only)

• Basic rule groups:
1. Structure and portability (Data types, naming, coding, statements…)

2. Downstream checks (Racing, sensitivity lists, clocks & resets, bit widths…)

3. Error-prone patterns (Subprograms, registers, interconnections, hazardous blocks…)

16

www.aldec.com

Group #1: Structure & Portability
• Code structure and readability for efficient reuse, examples:
 Declare one object per line and always add comments
 Port description order should follow a pattern
 Avoid using hard-coded numbers for characteristics that may change
 Do not use similar identifiers even in different namespaces
 Use VHDL data types properly
 All objects declared in the code must be used
 Global design parameters must be defined in a package
 …

17

www.aldec.com

Group #1: Rule Sample (Reuse)
18

process (CLOCK, RESET, ENABLE)
begin

if RESET='0' then

FIBOUT <= "00000001";
PREV_FIB <= "00000000";

elsif falling_edge(CLOCK) and ENABLE='1' then

PREV_FIB <= FIBOUT;

case (FIBOUT="00000000") and (PREV_FIB="00000000") is

when true => FIBOUT <= "00000001";
when others => FIBOUT <= FIBADD;

end case;

else
null;

end if;
end process;

Main message –

Hard-coded number(s) used in
the process.

1

Detail message –

“00000000” should be
parameterized.

2

Avoid using hard-coded numbers for characteristics that may change

www.aldec.com

Group #2: Downstream Stages
• Problems that normally surface later in design flow, examples:
 Do not use non-synthesizable subset of the HDL language
 Do not use combinatorial feedbacks (racing conditions)

 Avoid unreachable conditions (code that will never be executed)

 Define all the necessary signals in sensitivity lists (combinatorial process)

 Avoid internally generated clocks unless they are properly isolated
 Gated clocks can be used only at a top level (ASIC-specific)

 …

19

www.aldec.com

Group #2: Rule Sample (Synthesis)
20

module calc_sfk(S, AIN, BIN, Y, Z);

input [1:0] S;
input [7:0] AIN, BIN;
output reg [7:0] Y, Z;

always @(S or AIN or BIN) begin
if (S == 2'b00) begin
Y = AIN & BIN;
Z = 0;

end
else if (S == 2'b01) begin
Y = 0;
Z = AIN | BIN;

end
else if (S == 2'b10) begin
Y = 0;

end
else begin
Y = 1;
Z = 0;

end
end

endmodule

Main message –

The ‘always‘ process description
infers latch for 1 signal.

1

Detail message –

Signal “Z" is not assigned in all
cases.

2

AIN

BIN

S

ZY

Latch is mixed with comb.
logic inference – usually
happens by a mistake!

Avoid unintentional latch inference

www.aldec.com

Group #3: Error-Prone Patterns
• Design patterns that are prone to problems and errors, examples:
 Empty blocks should not be used
 Do not describe multiple independent conditions in a process
 Avoid unconnected and misused ports
 All referenced signals should have drivers
 Avoid using hazardous synchronization schemes (process-level)

 Do not locate logic between asynchronous clock domains (metastable conditions)

 …

21

www.aldec.com

Group #3: Rule Sample (CDC)
22

module add_sub(CLK_1, CLK_2, ADD_SUB, ARG_A, ARG_B, RES);
input CLK_1, CLK_2;
input ADD_SUB;
input [`BIT_LENGTH-1:0] ARG_A, ARG_B;
output [`BIT_LENGTH-1:0] RES;
wire [`BIT_LENGTH-1:0] res_add, res_sub, trnsmt;
adder adder(
.A (ARG_A),
.CLK(CLK_1),
.B (ARG_B),
.RES(res_add)

);
subtractor subtractor(
.CLK(CLK_1),
.A (ARG_A),
.B (ARG_B),
.RES(res_sub)

);
div2 div2(
.CLK(CLK_2),
.ARG(trnsmt),
.RES(RES)

);
assign trnsmt = (ADD_SUB)? res_add : res_sub;

endmodule

1

2

Comb. logic is present on
clock domains crossing path!

Violation message –

The "first_stage_ff“ flip-flop
obtains data from another clock
domain through combinational
logic – risk of functional errors
caused by propagation of
incorrect values/glitches.

Do not locate logic between asynchronous clock domains

www.aldec.com

Running the Automated Review
• Design review process is governed by the Flow Manager in ALINT:

23

Group #1
Phase

#1 Violation
DB #1

Criteria
#1

Group #N Phase
#N Violation

DB #N

Criteria
#N

www.aldec.com

Analyzing Review Phase Results
• Violation database is generated at each phase:
 Dedicated Violation Viewer tool is available for violations analysis

24

2. Navigation
tree

3. Violations

4. Viewpoints

1. Toolbar

www.aldec.com

Documenting Review Phase Results
• Export to a spreadsheet
 Document fixed violations (how, what files modified, etc)

 Document irrelevant violations, if any

• Quality report
 Access design quality in terms of violated and non-violated rule weights

25

www.aldec.com

HDL Coding for Fail-Safe Designs
• As far as HDL Coding is concerned, Aldec tools enable:
 Implementing structured and repeatable design flow
 Creating HDL code and managing configurations
 Defining and checking HDL coding guidelines
 Creating HDL code artifacts and performing reviews
 Tracing HDL code to requirements

• Automated HDL code reviews with Aldec ALINT:
 Executable flows based on predefined or custom coding standards
 Tools for results analysis and documentation
 Three preset groups recommended for DO-254 designs

26

	Automated Code Reviews for Fail-Safe Designs
	Agenda
	Fail-Safe Design Assurance Guidelines
	DO-254 HW Design Assurance Levels
	DO-254 HW Design Life Cycle
	DO-254 and HDL Design
	Creating HDL Code
	Creating HDL Code Artifacts
	Tracing HDL Code to Requirements
	Managing HDL Code Versions
	Performing Code Reviews and Audits
	Defining HDL Coding Standards
	Challenges in Establishing Standards
	Checking HDL Coding Standards
	Benefits of Automated Reviews
	Aldec DO-254 HDL Coding Standards
	Group #1: Structure & Portability
	Group #1: Rule Sample (Reuse)
	Group #2: Downstream Stages
	Group #2: Rule Sample (Synthesis)
	Group #3: Error-Prone Patterns
	Group #3: Rule Sample (CDC)
	Running the Automated Review
	Analyzing Review Phase Results
	Documenting Review Phase Results
	HDL Coding for Fail-Safe Designs

