Automated Code Reviews for
Fail-Safe Designs

MAPLD’2011

Agenda

® Fail-safe design assurance guidelines (DO-254)
® HDL coding in hardware design life cycle
® Automated HDL code reviews

www.aldec.com

Fail-Safe Design Assurance Guidelines

* RTCA/DO-254:
¢ Design assurance guidelines for %
Airborne Electronic Hardware (AEH) D\e _2 54

¢ Accepted by the Federal Aviation When Safety is Critical
Administration (FAA) in 2005

¢ The goal of the standard is to ensure that AEH works reliably
¢ Design Assurance Levels (DAL) A—E determine hardware design objectives
¢ DO-254 projects have special requirements for tools and design flows

www.aldec.com ALDEC

DO-254 HW Design Assurance Levels

® Design Assurance Levels (DAL):

A

B

C

D

E
B

Catastrophic — failure prevents the safe flight and landing of the aircraft,

resulting in many fatalities including the crew.

Hazardous - failure reduces capability of the aircraft to fly, possibly
resulting in fatal injuries but not to the crew.

Major — failure reduces flight safety margins and the capability of the
aircraft to the point where potential injuries could occur.

Minor - failure does not significantly reduce aircraft safety, resulting in
potential discomfort to passengers or crew.

No effect - failure does not affect the operation of the aircraft.

DO-254 HW Design Life Cycle

® Design development activities and supporting processes:

Supporting Processes

. : *Validation and Verification (Section 6) !
Planning e, : , - :
. N *Configuration Management (Section 7)
(Section 4) , *Process Assurance (Section 8) i
i «Certification Liaison (Section 9) i

Hardware Desngn Process

: : (Section 5)
P, el Section 5.2 e Section 5.4
* Req. e Detailed e Product

capture e Concept. Design e Implement. transition
Design

N\

www.aldec.com ALDEC

D0O-254 and HDL Design

®* HDL Design fits in the following sections of DO-254 Life Cycle:
¢ Creating HDL code (Section 5.3.2)
¢ Defining coding standards/policies (Section 6-2.a)
¢ Creating code artifacts and documentation (Section 10.3.2)
* Tracing code to requirements (Section 6.2.1)
¢ Managing code versions (Section 7.0)

¢ Performing internal reviews and external audits (Section 6.3.3.2)

www.aldec.com ALDEC

Creating HDL Code

Section 5.3.2, Detailed Design Process Activities: The detailed design data for the hardware item
: should be generated based on the requirements and conceptual design data. This may include assembly :
: and interconnection data, component data, HDL, test methods and hardware-software interface data. :

® HDL Design is a typical process for Detailed Design phase
® HDL describes functional behavior of the actual hardware

® Text-based entry method requires advanced editors to facilitate
design development

HDL Editor Block Diagram Editor FSM Editor
17 library IEEE; LUE l
18 use IEEE.std logic 1164.all; Hewk DouTh— MEW GAME="T'
19 I - \
2@ Elentity fifo is piit| MM
21 generic [DIN HRESET A
24 port(aEzer
55 end entity; dffr

www.aldec.com ALDEC

Creating HDL Code Artifacts

: Section 10.3.2, Hardware Design Representation Data is comprised of the set of drawings,
: documents and specifications used to build the hardware item. Typical hardware design data: :
: conceptual and detailed design data, top-level and assembly drawings, verification and traceability data, :
: hardware acceptance criteria, problem reports, and etc. :

® Code and implementation data must be documented

® Automatic HDL Code visualization is essential

Code2Graphics

iposedge RESET orp
RESETE— 7N # (RESET)

=l
if (EMABLE)
bagin
]

www.aldec.com

aumign FULL = Chint mw 8 7

Export to PDF/HTML

g:} &) by Brmgrter D = & % | i i materd

[| P o CNT_ il

s e REDRLE-
ARCHT_&3.d0 L B

£ CNT_83 50
S FUNCTICNAL

AcTive-HDL™ _

Tracing HDL Code to Requirements

: Section 6.2.1, Verification Process Obijectives: The objectives of verification process are..
: Traceability is established between hardware requirements, the implementation, and the verlflcatlon
: procedures and results.

®* Implementation = HDL Code => requirements must be linked to:
¢ HDL Code that implements the requirements

¢ Verification methods that verify them
¢ Verification results

¢ Linking is usua”y implemented :f aiwjig_ngézedgigiE;ET or posedge CLE)
. . 18 if (EES3ET)
via HDL Code “tagging” at: - gint = 4'b000C
. 2 elzse if (ENLLE]]::eg:m
¢ Code level (more thorough tagging) - £ (Qmme == -
22 int = 4'bL0O000;
¢ Source file level E“EQm Coime s s
25 end
Z6 /* REQ END: REQZ */

www.aldec.com ALDEC

10

Managing HDL Code Versions

: Section 7.0, Configuration Management Process is intended to provide the ability to consistently
: replicate the configuration item, regenerate the information if necessary and modify the configuration :
: item in a controlled fashion if modification is necessary. :

® Project needs to be managed through the design flow:
¢ Version management (SVN, Clearcase, etc)
¢ Defect tracking (Mantis, Bugzilla, JIRA, etc)

Version Management Bug Tracking
ActiveHDL Source Control - Add to Source Control ...
Filez L G M D I000IEE o Rl A

Checker 33 B 1 should allov
DFT-comgatibie descriplion

200

QHH,.EEM_” ALNT_Fules STARC Vening Senous Change

v by DesignshPressControllerscompile.cfg _ILI
1| | 3

W Keep checked out Adyanced

Mfﬁ ALNT_Fules STARC Verlog Senouws Change Nommnal Checker 337 2 shoud ssu

- EIMELSZ 57 ALINE Fibes_S1A6L_Voriog Mna W Mo feaee Normal - ALUIEL 053 [avoed mesanit
CiMy_DesignshPrezsControllery0PressCaontroller. mgf | = b R &
My Designs\PrezsContrallery] PressController. rmaf DM o o7 ALMT Rokes STARG Verdog. Sereim ISSIRE EL1G Homndl ad tor singhe FF)
C:AMy_Designs\PressControllers2PressContraller. rgf Cancel | Ilhilmlﬁ?‘ﬂ' ALNT_Chip Level Engne Sercus Mew Performance E'&m Elabarabion hangs dus to p
CiMp_DesignshPrezsControllery 3PrezsCaontraller. gf S elect Al | o _ STARG_VLOG 1 312 shou

v CMy DesignsiPressControllersbde. set : o g ALBIE_Fes STRAC Vietog il e ::mmumnmﬂ Rt
- i ilati | 010- : . ; MDD LINE EAWITCH] Pieas
v LAy DezsignssPrezsControllercompilation. order Dezelect All DM 205 ALWE Chip Level Engne Senous Mew | Mewfomre Low mbh kw’mmmd‘;
Faaw
—I raw

www.aldec.com ALDEC

11

Performing Code Reviews and Audits

: Section 6.3.3.2, Design Review: A design review is a method to determine that the design data and
: implementation satisfy the requirements. Design reviews should be performed as defined in the plan at
: multiple times during the hardware design life cycle. Examples are conceptual design, detail design and :
: implementation reviews. :

® Review session details (minutes, Als) must be kept as a proof
® DO-254 project reviews:

¢ SOI-1: examination of planning documents

¢ SOI-2: design audit (after requirements, architecture, coding, and other internal reviews are done)

Project Hierarchy Flow Diagrams Documentation
_‘UUT(zc}ALDEcimi..c:.............
=4 CNV ; HEXBIN ""”f':) riahasitrr v R RS E R EER

+ ‘FSM . IntelHEX <> Credteds | BriO/ZON
i tDEC:ASC]IdEC . : Tit'i‘;: P R SRS
+ ‘HDRG . REGA = - Revision: © [1.0. 000l

Page:. . A
+-10F LDRG : REG4

www.aldec.com ALDEC

12

Defining HDL Coding Standards

: Order 8110-105, Section 6-2.a, Verification Process: We must expect that, if they use an HDL, : :

: applicants define the coding standards for this language consistent with the system safety objectlves
: and establish conformance to those guidelines by HDL code reviews.

® HDL code must adhere coding standards
defined by team Standards

® Standards could be based on: . i |
* Industry standards (e.g. STARC, RMM) m
¢ Standards supplied by a vendor Industry l In-house \
* In-house company standards |
| |

Popu|ar: SpeCiﬁed:

RMM, STARC DO-254

www.aldec.com ALDEC

13

Challenges in Establishing Standards

® HDL languages are very flexible and enable
for creativity in coding Planning
® Certain coding styles and practices lead to: iy}

¢ Problems in the downstream design phases

* In-hardware errors or malfunctions (safety threats!) HDL Coding

®* What standards to select and deploy?

¢ FAA didn't set any formal HDL coding standards
¢ Traditional standards are generic (STARC, RMM)

Other Stages &

of Design Flow
¢ In-house standards may be impractical

Implementation

www.aldec.com AL@

14

Checking HDL Coding Standards

Hardware Design Processes, Order 8110-105, Section 6-2.a: We must expect that, if they use an : :
: HDL, applicants define the coding standards for this language consistent with the system safety
: objectives, and establish conformance to those guidelines by HDL code reviews. :

® Manual vs. automatic reviews:

Reviews

5O
2

www.aldec.com ALDEC

15

Benefits of Automated Reviews

® Reduces cost of review vs. manual labor!
® Based on comprehensive knowledge base of Planning
industry best practices and design expertise iy’
® Code is more consistent and efficient vs.
manual review approach HDL Coding @
® Reviews can be performed more often — Nyl

good match with DO-254 philosophy

® Integrated debug environment for efficient
design analysis and documentation

Other Stages
of Design Flow

e

Implementation

www.aldec.com ALD@

16

Aldec DO-254 HDL Coding Standards

¢ Aldec DO-254 standard:
¢ Based on the feedback from real customers (vo-254 programs)
¢ Good foundation of guidelines for any design (ot pac /s ony)
® Basic rule groups:
1. Structure and portability (pata types, naming, coding, statements...)
2. Downstream checks (Racing, sensitivity lists, clocks & resets, bit widths...)

3 . Erro r-prone patte I'NS (Subprograms, registers, interconnections, hazardous blocks...)

www.aldec.com ALDEC

Group #1: Structure & Portability

® Code structure and readability for efficient reuse, examples:
¢ Declare one object per line and always add comments
¢ Port description order should follow a pattern
Avoid using hard-coded numbers for characteristics that may change
Do not use similar identifiers even in different namespaces
Use VHDL data types properly

0
0

0

¢ All objects declared in the code must be used

¢ Global design parameters must be defined in a package
0

www.aldec.com

17

18

Group #1: Rule Sample (Reuse)

ittt <1) process (CLOCK, RESET, ENABLE)
. beqgi
Main message — (e

if RESET="0" then

FIBOUT <= "00000001";

PREV_FIB <= "00000000";

I

1

1

:

| Hard-coded number(s) used in [
: the process.

1

]

------------------------ - elsif falling_edge(CLOCK) and ENABLE="1" then

PREV_FIB <= FIBOUT;

o —— i

2 | case (FIBOUT="00000000") and (PREV_FIB=""00000000") is
4 \)

Detail message — when true => FIBOUT <= "00000001";

when others => FIBOUT <= FIBADD;

“00000000” should be
parameterized.

end case;

o
il

se

null;
end if;

end process;

\

www.aldec.com ALDEC

Group #2: Downstream Stages

® Problems that normally surface later in design flow, examples:
¢ Do not use non-synthesizable subset of the HDL language

Do not use combinatorial feedbacks (racing conditions)

Avoid unreachable conditions (code that will never be executed)

Define all the necessary signals in sensitivity lists (combinatorial process)

Avoid internally generated clocks unless they are properly isolated

Gated clocks can be used only at a top level (asic-specific)

19

www.aldec.com ALDEC

20

Group #2: Rule Sample (Synthesis)

|| - A o~

Latch is mixed with comb.
logic inference — usually

/\ Y =1

Z = 0;

Y Z end
end
endmodule

module calc_sfk(S, AIN, BIN, Y, Z);

happens by a mistake! IN) beg, 1 Jmrmmmmmrmmmm e %
n i — 1
_ I : Main message :
z = o; : |
end] The ‘always’ process description :
e'iez'g_(s == 27b01) begin | infers latch for 1 signal. :
Z = AIN | BIN; \ s
end e)
else if (S == 2"b10) begin \EL}- ---------------------- =~
v=0; Detail message —
end
else begin

i
] I
| i
. : . .
1 Signal “Z" is not assigned in all s
1
1 cases. '
! I

o

www.aldec.com

21

Group #3: Error-Prone Patterns

® Design patterns that are prone to problems and errors, examples:
¢ Empty blocks should not be used
¢ Do not describe multiple independent conditions in a process
¢ Avoid unconnected and misused ports
¢ All referenced signals should have drivers
¢ Avoid using hazardous synchronization schemes (process-level)

* Do not locate logic between asynchronous clock domains (metastable conditions)
0

www.aldec.com ALDEC

22

Group #3: Rule Sample (CDC)

module add_sub(CLK_ 1, CLK 2, ADD_SUB, ARG_A, ARG B, RES);
input CLK_1, CLK_2;

- | - 3 input ADD_SUB;
4 3 input [BIT_LENGTH-1:0] ARG_A, ARG_B;
output [BIT_LENGTH-1:0] RES;
. -] B wire ["BIT_LENGTH-1:0] res_add, res_sub, trnsmt;
-5 5 adder adder(
A (ARG_A),
.CLK(CLK 1),
.B (ARG_B), P ——————————————— - n
.RES(res_add) i :
): { Violation message — I
tor(: :
.. I
Comb. logic is present on i The "first_stage_ff“ flip-flop !
. . | .
clock domains crossing path! | obtains data from another clock |
| domain through combinational !
| J s - . .
div2 div2(I logic —risk of functional errors :
-CLKE CLK_2)S | caused by propagation of :
| | -ARG(trnsmt), o : 1
> > 'RESC RES) | incorrect values/glitches. !
- | -); ,I Il
+ + assign trnsmt = (ADD_SUB = = e -7
— — endmodule u-

www.aldec.com ALDEC

Running the Automated Review

® Design review process is governed by the Flow Manager in ALINT:

|

www.aldec.com

= Fow Manager R
=g =E
> Run ‘
Mame | Quality | Critical Rules
4 %@ DO_254 :

a ﬁ 1. Secure coding practices
a4 ¥ =] 1.1 Assignments

' == 1.1.1.An object is assianed before being(Q) - 100%/80% ;R - 072

o ' 1.1.2. Duplicated =ignal assignments

0D - 100%80% (R - 01

o ' 1.1.3. Mixed =signal assignments

0 - 100%080% (R - o

' 1.1.4. Multiple =ignal drivers

=1 1.15. Style of assignments (Veriog only) iC) - 0%/80% [-0/2

ﬁ 1.2. Clocks and resets

24

Analyzing Review Phase Results

® Violation database is generated at each phase:
¢ Dedicated Violation Viewer tool is available for violations analysis

4 ﬂ ALDEC_WLOG.2204 (1)

bjack_c.w EHEn::-:lmmen-:IatiI:ln'1

[ﬂ results.avdb [1.1.1. &n object is assigned before being used] = e &]
File _Edit (F1(2)
B =i Y (EIEIEE P& & ' 1. Toolbar
Ii Name Rule Level Severity
> iz genv (1) ' : 2. Navigation
4 I;'.'EEJ bjack_cw (1)
4 =i, Recommendation1 (1) i tree

iWarning

3. Violations

' 4. Viewpoints

Line Instance Design U... Description
a5 EMD{E D_BJACK.E EEJACI{_C Referencing signals before assigning value tn.
: : them may cause redundant storage elements inference.
45 EMD{E D_BJACK.IE ;EJACI{_E Signal "Blacklack® iz referenced before assigned.
73 IMIKED BJACK B BJACK C Signal “Ace” is referenced before assigned.
| B summary =] sources M Design Units | P Instances | &l Rulesets | =l Rules | & 4 _llil"'
EAE SIK

www.aldec.com

ALDEC

Documenting Review Phase Results

® Export to a spreadsheet

¢ Document fixed violations (how, what files modified, etc)

¢ Document irrelevant violations, if any

® Quality report

Al B | c | D | E e ———
1 |File mrLine Origin Rule Violation Review comment
:!ggM 24 Module "GEN" ALDEC.2204 Referencing signals before assigning value to them maqThis violation is not relevant: |
3 30 ALDEC. 2204 Signal "DOINT[3]" is referenced before assigned. |- DOINT[3]: ‘assign’ outside the process (line #36) |
4 31 ALDEC.2204 Signal "DOIMT[0]" is referenced before assigned. |- DOINT[0]: ‘assign’ outside the process (line #37)

¢ Access design quality in terms of violated and non-violated rule weights

GAD0-254 (81%)

Eﬂr DO254 VHDL { 81%)
E-l,;_ﬂj Recommendation 1 { 75%)
P % DOZ254 VHDL.1211

: % DO254 VHDL. 1321

I T T T R W R T B T Y

www.aldec.com

DDEH_VHDL.H-IE” Warning		D	:	not have simultaneously active drivers on one =ignal.		
DO254_VHDL.1143		Warning		Use tri-states to control bidirectional bus mode.		
DO254 VHDL.1222		Warning		III-	:	not connect clocks to anything other than flip-flop clock ping
D254 VHDL.1231		Warning		D	:r not connect resets to anything other than flip-flop reset pins.	

25

26

HDL Coding for Fail-Safe Designs

® As far as HDL Coding is concerned, Aldec tools enable:
¢ Implementing structured and repeatable design flow
¢ Creating HDL code and managing configurations
¢ Defining and checking HDL coding guidelines
¢ Creating HDL code artifacts and performing reviews
* Tracing HDL code to requirements

® Automated HDL code reviews with Aldec ALINT:

¢ Executable flows based on predefined or custom coding standards
* Tools for results analysis and documentation
* Three preset groups recommended for DO-254 designs

www.aldec.com ALDEC

	Automated Code Reviews for Fail-Safe Designs
	Agenda
	Fail-Safe Design Assurance Guidelines
	DO-254 HW Design Assurance Levels
	DO-254 HW Design Life Cycle
	DO-254 and HDL Design
	Creating HDL Code
	Creating HDL Code Artifacts
	Tracing HDL Code to Requirements
	Managing HDL Code Versions
	Performing Code Reviews and Audits
	Defining HDL Coding Standards
	Challenges in Establishing Standards
	Checking HDL Coding Standards
	Benefits of Automated Reviews
	Aldec DO-254 HDL Coding Standards
	Group #1: Structure & Portability
	Group #1: Rule Sample (Reuse)
	Group #2: Downstream Stages
	Group #2: Rule Sample (Synthesis)
	Group #3: Error-Prone Patterns
	Group #3: Rule Sample (CDC)
	Running the Automated Review
	Analyzing Review Phase Results
	Documenting Review Phase Results
	HDL Coding for Fail-Safe Designs

