
Rizwan A. Ashraf, Rashad S. Oreifej, and

Ronald F. DeMara
Department of Electrical Engineering and Computer Science,

University of Central Florida

Scalability of Sustainable Self-Repair to
Mitigate Aging Induced Degradation in SRAM-

based FPGA devices

ReSpace/MAPLD 2011 Conference,
22-25 August 2011,

Albuquerque, NM

Evolvable Hardware

Automated

Construction:

develop
Electronic
Circuits by
Intelligent
Search

Applications:
Design,
Optimization,
or Failure
Recovery
phases

Evolvable

Hardware

Intelligent
Search

Hardware
Design

Amplifiers

Antennas

Filters

Bayesian

Simulated
Annealing

Genetic Algorithms

Nearest
Neighbor

FPGAs

Applications

Individual

(Chromosome)

GENE

GAs frequently use binary strings to

represent candidate solutions: genotype

 Translation to FPGA Configuration bitstream

maps genotype to phenotype FPGAs for

evolving digital logic

Operational Flow of EHW Techniques

1. Objective for EHW procedure is specified

 realize a 8-bit adder circuit or program a digital chip to perform a function such as tone

discrimination

 Relative ranking called Fitness Function is defined

2. Population of alternative designs is created

 completely at random or seeded with hand designed

3. Genetic Algorithm invoked to evolve each alternative

 Fitness evaluated for alternatives using FPGA programmable logic and interconnect

resources to realize arbitrary number of circuits

 Genetic Operators used to increase fitness

4. Fitness Exit Criteria checked

 If max(fitness)<threshold then repeat Step 3

5. Best design represents desired hardware configuration

FPGA

Example: GA running on PowerPC

platform configures the

reprogrammable SRAM-

based FPGA through ICAP

config

 FPGA final configuration implements the circuit

GA

PowerPC

ICAP

results

GA-based Refurbishment

Genetic Algorithms:
 Implement guided trial-and-error search using principles of

Darwinian evolution

 Iterative selection enforces “survival of the fittest”

 Genetic operators - mutation, crossover, … - can be used to
refurbish FPGA-based designs

Previous GA-based Refurbishment on FPGAs:
 Vigander used three faulty modules in a Triple Modular Redundancy

(TMR) arrangement partially refurbished through GA to circumvent the
problem of refurbishment of large-sized modules (circuits) [1].

 DeMara et. al. used a technique referred to as Competitive Runtime
Reconfiguration (CRR) [2] which performs fitness evaluation on actual
runtime inputs and without a static pre-defined fitness function.

 Oreifej et. al. developed an intrinsic evolutionary platform for
refurbishment of digital circuits on a Xilinx Virtex-II Pro FPGA device by
directly manipulating its bitstream using GA [3]

Focus of this work

• Effectively utilize GA based technique for refurbishment of SRAM-
based FPGAs at application level

• Address the notion of sustainability of multi-year space missions,
employing SRAM-based FPGAs.

 FPGAs attractive platform due to short design deployment time and
flexibility in reconfiguration at runtime.

• Counter the affects of aging induced hard faults in FPGAs.

 Trending concern in sub 90nm technology [4]

 Xilinx launches 28nm FPGAs [5]; Lower gate length & lower operating

voltages affects reliability of FPGA devices.
 Hot Carrier Effect (HCE), Time Dependent Dielectric Breakdown (TDDB)

and Electromigration (EM) can cause permanent faults.

 Aging induced degradation can impact application sized cores in as soon
as 3 years under normal operating conditions [4]

• Aging may cause multiple faults to occur, the single fault
assumption may not be widely applicable in future systems [6]

• Most works focus on Single Event Upset (SEU) based transient or
soft faults, which are caused due to radiation effects, not aging.
 Scrubbing can be efficiently employed to alleviate the effects of SEUs [7]

Related Work

• McCluskey’s Reconfigurable Architecture for Autonomous
Self-Repair [8]

− Utilize the reconfiguration feature of FPGAs to recover from
permanent faults

− Multiple precompiled configurations (at design time) with disjoint
unused portions of FPGA are used to tolerate faults in these portions

− Can only handle a single failure throughout the operational period of
an application, per unused block.

− Online detection of error using Concurrent Error Detection (CED)

− Issue: Sustainability?

Figure from [8] illustrating

the functionality based

over-lapping scheme

DTRS: Coarse-grain Partitioning

Dynamic Tile Reconfiguration for Sustainability (DTRS)

• Application is partitioned into functionally decoupled sub-
circuits at design-time.

• Sub-circuits are to be mapped onto independent
Reconfigurable Regions on the FPGA
 Minimum size of a region is based on the minimum configuration

frame size of the FPGA being employed e.g. Xilinx Virtex-4 FPGA
has a minimum frame of 16x1 Configurable Logic Blocks (CLBs)
i.e. allows more than one non-overlapping regions in a given
column.

• Generate alternative configurations via functionality-based
overlapping scheme [8]

• The independent regions are referred to as tiles in this
work.

Example: Six design time configurations

w/alternatively located spares

Configuration #1 Configuration #2 Configuration #3

Configuration #4 Configuration #5 Configuration #6

DTRS: Fault Recovery

• CED is used to determine the location of the fault

• If location of fault is not known, then “Blind Reconfiguration” has
to employed to recover from faulty situation

• System remains online to identify suitable spare configuration

• Example: Assuming Configuration 1 is configured and a fault is
observed in tile T5. Configuration 2 can be downloaded to avoid the
fault as it implements the spare tile at location of tile T5.

Fault Detected Fault Recovered

DTRS: Sustainability

• Restore the original pool of configurations – so as to sustain
future failures

• The faulty tile is restored for the function(s) as in the original
pool of configurations

• Example: Further failures cannot be tolerated, as all other
configurations will articulate the fault. The original pool of
configurations can be restored by successfully implementing the
function D in the presence of the fault in tile T5 (best case scenario)

• Additional Example illustrating the worst case scenario: Assuming
initially Configuration 1 is configured and a fault is observed in tile T4.
In this unique case, to successfully restore the original pool of
configurations, all functions will have to be implemented in tile T4.

DTRS: Sustainability

• GA-based technique is used to implement the desired function(s)
in the presence of hard fault(s) for a given tile

• Dynamic partial reconfiguration feature of FPGAs is to be used,
so as to maintain good throughput during the refurbishment
process.

• CED scheme, if implemented can be used in the fitness function
of the GA

• Exhaustive or pseudo-exhaustive fitness evaluation can also be
performed as introduced in [2]

Evolve function D for

tile T5 – using

dynamic partial

reconfiguration

Figure illustrating best case

scenario based on design time

partitioning arrangements

for the presented example

DTRS: Sustainability

• GA-based technique is used to implement the desired function(s)
in the presence of hard fault(s) for a given tile

• Dynamic partial reconfiguration feature of FPGAs is to be used,
so as to maintain good throughput during the refurbishment
process.

• CED scheme, if implemented can be used in the fitness function
of the GA

• Exhaustive or pseudo-exhaustive fitness evaluation can also be
performed as introduced in [2]

Figure illustrating worst case

scenario based on design time

partitioning arrangements

for the presented example

Evolve functions A, B, C,

D, and E for tile T4 –

using dynamic partial

reconfiguration

Objective of the experiments

Determination of a tractable tile size that can be refurbished by
the GA in a reasonable amount of time

• Objective 1: Investigate the time to refurbish as a function
of number of LUTs in a tile

• Objective 2: Assess the dependence of fan-out of the tile
on the refurbishment time

• Objective 3: Investigate the time to refurbish in terms of
the number of faults present in a given tile.
− Multiple faults may arise due to aging of a tile implementing a

sub-circuit with high switching activity as suggested in [4]

Simulation Setup

• Experiments conducted with MCNC benchmark circuits [9]

• The benchmark circuits are mapped by employing a custom cell
library supported by the modeled FPGA platform

− FPGA Mapping operation is performed using the abc tool [10]

• Standard finite population GA is used with the settings as listed
below.

• Stuck-at faults are employed at the inputs of LUTs.

− This can be used to model interconnect failures

• Bitwise comparison is performed to measure the fitness of
individuals under refurbishment

− c17 benchmark circuit: The maximum numerical value of fitness
for a refurbished configuration is 2^(5-bit input)* 2-bit output=64

• GA stops when it achieves the maximum possible fitness or a
preset fitness threshold level i.e. 95% throughput.

Parameter Value

Population Size 20, 50

Mutation Rate 0.005

Crossover Rate 0.6

Tournament Size 5

Experimental Results Summary – Single

Fault Experiments (100% refurbishment)

c17 cm42a
3-to-8

decoder
cm85a

3x3

Multiplier
misex1 Z9sym

No. of LUTs 8 20 24 36 40 72 148

Max Fitness 64 160 64 6144 384 1792 512

Fitness after

Fault
46 159 57 6120 327 1648 420

Avg. no. of

Generations
105 529 169 113.1 1428 77297 226745.5

95%

Confidence

Interval

102 →

109

428 →

630

145 →

193

92.6 →

133.6

1018 →

1837

51129 →

103464
N/A

No. of runs 20 20 20 20 20 20 2

I/O Characteristics of benchmark circuits used
• c17 (5 inputs, 2 outputs)

• cm42a (4 inputs, 10 outputs)

• 3-to-8 decoder (3 inputs, 8 outputs)

• cm85a (11 inputs, 3 outputs)

• 3x3 multiplier (6 inputs , 6 outputs)

• misex1 (8 inputs, 7 outputs)

• Z9sym (9 inputs, 1 output)

• GA-based 100 % refurbishment results under single fault scenario

Experimental Results Summary – Multiple

Faults experiments (100% refurbishment)

3x3 Multiplier Logical Function

No. of Faults 1 2 3 4

Fitness after

Fault 327 282 239 247

Avg. no. of

Generations 1428 18817 30963 71156

95% Confidence

Interval 1018 → 1837 10839 → 26794 21382 → 40544

39934 →

102378

No. of runs 20 20 20 10

• GA-based 100% refurbishment results under multiple faults scenario

Circuit Refurbishment: Fitness vs. Time

6105

6110

6115

6120

6125

6130

6135

6140

6145

6150

1 4 7
1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

1
2
1

1
2
4

1
2
7

1
3
0

1
3
3

1
3
6

1
3
9

1
4
2

1
4
5

1
4
8

1
5
1

1
5
4

1
5
7

1
6
0

1
6
3

F
it

n
e
s
s

Generations

cm85a benchmark circuit

100% throughput

Circuit Refurbishment: Fitness vs. Time

1550

1600

1650

1700

1750

1800

1
5
6
3

1
1
2
5

1
6
8
7

2
2
4
9

2
8
1
1

3
3
7
3

3
9
3
5

4
4
9
7

5
0
5
9

5
6
2
1

6
1
8
3

6
7
4
5

7
3
0
7

7
8
6
9

8
4
3
1

8
9
9
3

9
5
5
5

1
0
1
1
7

1
0
6
7
9

1
1
2
4
1

1
1
8
0
3

1
2
3
6
5

1
2
9
2
7

1
3
4
8
9

1
4
0
5
1

1
4
6
1
3

1
5
1
7
5

1
5
7
3
7

1
6
2
9
9

1
6
8
6
1

1
7
4
2
3

1
7
9
8
5

1
8
5
4
7

1
9
1
0
9

1
9
6
7
1

2
0
2
3
3

2
0
7
9
5

2
1
3
5
7

2
1
9
1
9

2
2
4
8
1

2
3
0
4
3

2
3
6
0
5

2
4
1
6
7

2
4
7
2
9

2
5
2
9
1

2
5
8
5
3

2
6
4
1
5

2
6
9
7
7

2
7
5
3
9

2
8
1
0
1

2
8
6
6
3

2
9
2
2
5

2
9
7
8
7

3
0
3
4
9

3
0
9
1
1

3
1
4
7
3

F
it

n
e
s
s

Generations

misex1 benchmark circuit

95% throughput

Circuit Refurbishment: Fitness vs. Time

• Number of Generations required to find throughputs of 95%

& 100% for various benchmarks under single fault scenario

3x3 Multiplier misex1 Z9sym

Throughput 95% 100% 95% 100% 95% 100%

run 1 9 355 10 7773 3628 60195

run 2 76 370 4 16865 21203 393296

run 3 17 463 102 18472 37586 DNF*

run 4 29 585 169 23610 55714 DNF

run 5 5 690 77 27466 85230 DNF

run 6 22 783 39 56388 37946 DNF

run 7 19 794 12 57155 20304 DNF

run 8 48 820 11 68145 18154 DNF

run 9 25 1104 12 89996 114711 DNF

run 10 30 1115 10 105816 24445 DNF

* DNF=Did Not Find Solution in Max

Number of Generations of 450000

95% achievable for

moderately sized circuits

Circuit Refurbishment in the presence of

multiple faults

0

50

100

150

200

250

300

350

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4

F
it

n
e
s
s

A
v

g
 G

e
n

e
ra

ti
o

n
s

Number of Faults

Avg Number of generations to
refurbish

Initial Fitness in presence of Fault

Results Summary

• Results indicate

• high throughputs such as 95% can be achieved in relatively
quick time as compared to achieving 100%, which may be
sufficient for majority applications

• the time to refurbish increases in the presence of multiple
faults

• increasing the fanout of a tile increases the time to refurbish

References

[1] S. Vigander, Evolutionary Fault Repair of Electronics in Space Applications, in Dept. of Computer & Information

Science, Dissertation, Norwegian University of Science and Technology, Trondheim, Norway, 28 February 2001.

[2] Ronald F. DeMara, Kening Zhang, Carthik A. Sharma, "Autonomic fault-handling and refurbishment using

throughput-driven assessment", Applied Soft Computing, Vol. 11, Issue 2, pp. 1588-1599, March 2011.

[3] R. S. Oreifej, R. N. Al-Haddad, H. Tan, R. F. DeMara, "Layered Approach To Intrinsic Evolvable Hardware Using

Direct Bitstream Manipulation Of Virtex II Pro Device," in Proceedings of the 17th International Conference on Field

Programmable Logic and Applications (FPL'07), Amsterdam, Netherlands, 27-29 August 2007.

[4] Suresh Srinivasan, Krishnan Ramakrishnan, Prasanth Mangalagiri, Yuan Xie, Vijaykrishnan Narayanan, Mary

Jane Irwin, Karthik Sarpatwari, "Towards Increasing FPGA Lifetime", IEEE Trans. Dependable and Secure

Computing. vol. 5, Issue 2, pp. 115-127, 2008.

[5] Xin Wu, Prabhuram Gopalan, Greg Lara, "Xilinx Next Generation 28 nm FPGA Technology Overview", Xilinx white

paper, wp312, March 26, 2011.

[6] Wenjing Rao, Chengmo Yang, Karri, R., Orailoglu, A.,"Toward Future Systems with Nanoscale Devices:

Overcoming the Reliability Challenge", IEEE Computer magazine, vol. 44, Issue 2, pp. 46-53, Feburary 14, 2011.

[7] Carl Carmichael, Chen Wei Tseng, "Correcting Single-Event Upsets in Virtex-4 FPGA Configuration Memory",

Xilinx application note, xapp1088, October 5, 2009.

[8] S. Mitra, W. Huang. N.R. Saxena, S. Yu and E.J. McCluskey, “Reconfigurable Architecture for Autonomous Self-

Repair,” IEEE Design & Test of Computers, Special Issue on Yield & Reliability, Vol. 21, Issue 3, pp. 228-240,

May-June 2004.

[9] S. Yang, "Logic Synthesis and Optimization Benchmarks, Version 3.0," Tech. Report, Microelectronics Center of

North Carolina, 1991.

[10] Berkeley Logic Synthesis and Verification Group, University of California, Berkeley, “ABC: A System for Sequential

Synthesis and Verification”, www.eecs.berkeley.edu/~alanmi/abc.

[11] J. F. Miller, P. Thomson, and T. Fogarty., "Designing Electronic Circuits Using Evolutionary Algorithms. Arithmetic

Circuits: A Case Study," in Algorithms and Evolution Strategy in Engineering and Computer Science, D.

Quagliarella, J. Periaux, C. Poloni, and G. Winter, Eds. Chichester, England, 1998, pp. 105-131.

