

Engineering, Operations & Technology Boeing Research & Technoloogy

## Recearch & Technology

# 90nm RHBD ASIC Design Capability

### **ReSpace/MAPLD 2011**

Tony Amort, Warren Snapp, John Evans, Jeremy Popp, Manuel Cabanas-Holmen, Ethan Cannon



This work was sponsored in part by the Defense Threat Reduction Agency under contract #: HDTRA1-05-D-0001-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

### **Motivation for RHBD on Commercial**



RHBD with leading-edge commercial device technologies provides a sustainable option which ensures the supply of radiation-hardened components for future space systems.



Solid-State Electronics Development



Engineering, Operations & Technology | **Boeing Research & Technology** 

Solid-State Electronics Development



Engineering, Operations & Technology | Boeing Research & Technology

**Solid-State Electronics Development** 



Engineering, Operations & Technology | Boeing Research & Technology

**Solid-State Electronics Development** 



### High Performance Communication Satellite DSPs Require Advanced ASICs

Engineering, Operations & Technology | **Boeing Research & Technology** 

**Solid-State Electronics Development** 

| Parameter          | ICO           | Thuraya              | Spaceway             | Today's<br>Capability |
|--------------------|---------------|----------------------|----------------------|-----------------------|
| ASIC Technology    | 0.7µm<br>RHBP | 0.25µm<br>Commercial | 0.18µm<br>Commercial | 90nm<br>RHBD          |
| Number of ASICs    | 2300          | 360                  | 390                  | 76                    |
| Performance (TOPS) | 3.6           | 14                   | 62                   | 105                   |
| Mass (Kg)          | 270           | 190                  | 124                  | 90                    |
| Power (W)          | 2200          | 2300                 | 2100                 | 1575                  |
|                    | •             |                      |                      |                       |
|                    | RHBP          | RHBA                 |                      | RHBD                  |



Switchover to commercial ASIC technologies enabled major advances in functionality and performance

### **RHBD90** Development

Engineering, Operations & Technology | **Boeing Research & Technology** 

Design

**Enablement** 

#### Solid-State Electronics Development

### Technology Characterization







# **RHBD Design Libraries & IP** Standard Cell Libraries I/O Libraries SRAMs **PLLs DDR2** I/F SERDES

### **Demonstrations**

### **RH Cortex**

- ARM Cortex R4
- 22 million transistors
- 430 MHz



### MAESTRO

- 49 core processor
- 10 Gbps SERDES
- 750 million transistors
- 7,000 C4 Bumps



### RHBD with Commercial 90nm CMOS TID Response

Engineering, Operations & Technology | **Boeing Research & Technology** 

Solid-State Electronics Development



TID Hardness Demonstrated at Device, Circuit and SoC Levels

### RHBD with Commercial 90nm CMOS Single-Event Effects – Flip-Flop Upsets

Engineering, Operations & Technology | Boeing Research & Technology

Solid-State Electronics Development



**Flip-Flop Options** 





DICE FF (15.4µm x 3.36µm)



Cross-section depends on incident angle



- Classical methods of SEU rate analysis are not applicable to redundant designs
- Pursued three analysis paths:

□75°Kr

□ 70° Kr

□65°Kr

60° Kr

🗖 55° K

- Boeing FastGT
- VU/ISDE MRED
- Robust Chip Monte-Carlo/Accuro
- Good agreement among all 3 analysis methods

### SEU can be Mitigated Effectively

Cross-

section

(cm<sup>2</sup>)

1E-1

### Flip-Flop SEU Analysis

Engineering, Operations & Technology | Boeing Research & Technology

Solid-State Electronics Development



- Classical methods of SEU rate analysis (such as CREME96) are not applicable to redundant designs
  - Use single sensitive volume
  - Neglects geometric effects
- Angular effects must be accounted for
  - DICE is SEU Immune for ions with inclination at or less than 60 degrees
  - Soft DICE SEU Rate > 1000 times greater than DICE

### **RHBD with Commercial 90nm CMOS Single-Event Effects – SRAM Upsets**

Engineering, Operations & Technology | Boeing Research & Technology

#### Solid-State Electronics Development



**RHBD** techniques include

- Bit spacing
- Scrubbing

1 E+04

- Error detection
- Bit cell design
- Peripheral ckt design





SEU Mitigated for Heavy lons, High and Low Energy Protons

### **RHBD with Commercial 90nm CMOS Single-Event Effects—Transients**

Engineering, Operations & Technology | Boeing Research & Technology

#### Solid-State Electronics Development

- System-level error rate methodology includes temporal and logical masking
  - Characterized pulse spectra vs. LET
  - Determined SET generation rate for multiple environments



SETs leading to errors depend on timing and logical masking

1.E-11

1.E-12

1.E-13

1.E-1

1.E.1

88

44

SET Rate



#### Buffer sizing for clock/reset trees

**RHBD** Library includes temporal filter elements

#### (events/device-day) 1.E-07 1.E-08 GEO (Heavy lons) **70** % 1.E-09 —LEO (Heavy lons) 1.E-10 ï 🕶 GEO Filter **50** %

132 176 220 264 308 352

Pulse Width (picoseconds)

Variety of mitigation techniques allows design trades

#### **Temporal filter reduces error rate**

Effectiveness

Effectiveness

LEO Filter

40%日

**30** %

**20** %

### **RHBD Design Flow**

Engineering, Operations & Technology | Boeing Research & Technology

- Proven design flow based on Synopsys Recommended Methodology (RM) flow
- Radiation effects mitigation and analysis added



### **SEE Analysis Overview**

Engineering, Operations & Technology | **Boeing Research & Technology** 

- Single-Event Effects drive radiation performance in sub-100nm technology
- System effects differ on different circuits and environments
- To solve this complex problem we developed an algorithm and methodology to quantify system



SEE analysis in design loop allows performance vs. error-rate tradeoff

### **SEE Analysis Flow**



### **RHBD90** Demonstrations

Engineering, Operations & Technology | **Boeing Research & Technology** 

#### Solid-State Electronics Development

### **RH Cortex**

- ARM Cortex R4
- 22 M Transistors
- 430 MHz
- Demonstrated
  - Hardening commercial IP
  - Integration of RHBD library with commercial EDA tool flow
  - Successful operation to specified performance
  - System error rate prediction



### **MAESTRO**

- 49 core general-purpose processor
- 10 Gbps SERDES
- 750 million transistors
- 7,000 C4 Bumps
- Demonstrated
  - Design flow supports large, complex chips



### **RH-ARM Cortex R4**

Engineering, Operations & Technology | Boeing Research & Technology

and a state of the state state

- Industry-Leading Processor for Embedded Control & Sensor Applications
- Optimized for High-Performance, Real-Time operation
  - 370 MHz @ 1.0V
  - 1,065K Drystones
- Integrated Floating Point Processor
- Fault-Tolerance Support
- Extensive Software Development & Debug Infrastructure
- Successfully demonstrated:
  - Performance, power, and area RHBD metrics
  - Performance-optimized RH memory
  - Transient hardening of clock and reset trees
  - Radiation hardening of commercial IP
  - Error rate prediction analysis
  - Flip-chip Packaging

- TID Hard to 1MRad
- SEU Hardened
  - Clock and reset tree hardening
  - FF & SRAM hardening



### **MAESTRO RH Multi-Core Processor**

Engineering, Operations & Technology | **Boeing Research & Technology** 

- RHBD version of the Tilera 26480 processor:
- 300MHz, 44 GOPS, 22 GFLOPS
- 2D mesh of 49 cores with low latency networks
- Each core a general purpose processor with FPU
- High speed external serial interfaces (XAUI)
- DDR1 or 2
- 18W, 500 kRad TID
- Software development environment in place



Solid-State Electronics Development

- Excellent performance across processing domains
- FIR filter 5 GFLOPS
  sustained performance
  (26% peak)
- FFT 4 GFLOPS sustained performance (21% peak).



- Autonomous operations
- Parallel Processing
- Sensor Fusion
- ALTAIR Lunar Lander
- Europa Deep Space

### **MAESTRO RH Multi-Core Processor**

Engineering, Operations & Technology | Boeing Research & Technology

Solid-State Electronics Development

- Functional test complete
- MAESTRO Development Board (MDB) system available for software/hardware application development





MDB system in use for software development

### **Demonstration Testing**

Engineering, Operations & Technology | **Boeing Research & Technology** 

### Error Rates predicted

- Errors classified by type
  - Uncorrectable SRAM errors
  - Recoverable errors
  - Un-recoverable errors
- Predictions were used in design trades
- Heavy Ion testing performed
  - Scan chains
  - Functional at-speed testing
  - Variety of tilt and rotation angles

#### RHBD ARM Cortex<sup>™</sup> R4



#### RHBD Single-Core Tilera



### **Reset Logic and SRAM Results**

Engineering, Operations & Technology | **Boeing Research & Technology** 

**Solid-State Electronics Development** 

- Reset tree Single Event Transient (SET) sensitivity of the RHBD ARM Cortex™ R4 processor
- Solid curves represent the predicted cross section from logic gates in the RESET tree, as identified in the bottomup analysis
- Uncorrectable error rate in SRAM test array of the RHBD ARM Cortex<sup>™</sup> R4 processor as a function of SRAM bit upset rate
- The expected error rate is also shown

Validated our approach of predicting microprocessor sensitivity based on testing dedicated test structures in the same design environment



### **Functional Test Results – Recoverable Errors (SEFI)**

Engineering, Operations & Technology | Boeing Research & Technology

Solid-State Electronics Development

- All RHBD Single-Core Tilera processor test routines produced similar Recoverable Error (SEFI) cross sections
- Predicted Recoverable Error Rate was within 35% of the rate calculated from measured results
- Number of Recoverable Errors increased with frequency as predicted
  - Combined errors from logic SETs, clock tree SETs and RESET tree SETs
  - Errors from logic SETs dominated rate

|                       | Predicted Error Rate<br>(errors/processor-day) | Measured Error Rate<br>(errors/processor-day) |         |         |
|-----------------------|------------------------------------------------|-----------------------------------------------|---------|---------|
|                       |                                                | Add                                           | Hazard1 | Hazard5 |
| Recoverable<br>Errors | 4.8E-05                                        | 3.2E-05                                       | 5.8E-05 | 5.7E-05 |

#### **Recoverable Error Cross-Section**



Engineering, Operations & Technology | **Boeing Research & Technology** 

- Boeing has distributed the library to several government agencies and licensed it to several companies
- Aeroflex Colorado Springs is working to productize and qualify the RHBD90 ASIC design flow and library to QML V

## Conclusions

Engineering, Operations & Technology | Boeing Research & Technology

**Solid-State Electronics Development** 

RHBD on *leading-edge commercial device* technologies provides needed performance and integration density with assured access

- Robust RHBD ASIC design environment in place at Trusted Design Center
- 90nm Rad Hard by Design ASIC capability has been demonstrated in multi-million gate SoCs

