

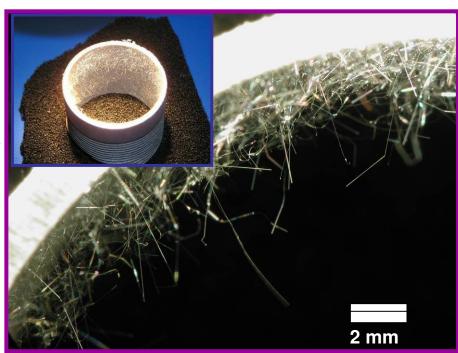
Metal Whiskers:

Discussion for AAMI Cardiac Rhythm Management Device Committee

Jay Brusse / Perot Systems

Dr. Henning Leidecker / NASA Goddard

Lyudmyla Panashchenko / Univ. of MD-CALCE Graduate Student


http://nepp.nasa.gov/whisker

May 13, 2008 AAMI Cardiac Rhythm Management Device Committee

Outline

- A Brief History of Metal Whiskers
- System Failure Modes Caused by Metal Whiskers
- A Few Mitigation Strategies to Reduce Harm From Metal Whiskers
- Inspection Tips

Zinc Whiskers on <u>Hot Dip Galvanized</u> Steel Pipe

Cover Photo: Tin whiskers on Tin-Plated Beryllium Copper PCB Card Rails

• NO WHISKER GROWTH THEORY TO BE DISCUSSED!!!

May 13, 2008

Metal Whiskers

Could Metal Whiskers Impact the Medical Device Community?

1980s Tin Whiskers Lead to FDA Class I Pacemaker Recall

U.S. Food and Drug Administration

OFFICE OF REGULATORY AFFAIRS

Inspector's Technical Guide Number 42: *"Tin Whiskers – Problems, Causes, and Solutions* 3/14/1986

http://www.fda.gov/ora/inspect_ref/itg/itg42.html

- FDA Class I recall of pacemakers from one manufacturer
 - Failure Mode: Loss of pacemaker output
 - Failure Mechanism: Tin whiskers from tin-plated case of a crystal short the case to crystal
- FDA publishes ITG #42 to describe the basics of tin whiskers
 - Recommends avoidance of tin coatings
 - Recommends INDEPENDENT verification of coating compositions
 - Pacemaker manufacturer's crystal specification required Au, Ni or solder (Sn-Pb) plating, but a batch of pure tin-plated cases was supplied in error
 - Manufacturer had no independent verification of plating composition

Trust... BUT VERIFY!!!

Metal Whiskers

1980s/1990s Zinc Whiskers Lead to FDA Class I Apnea Monitor Recall

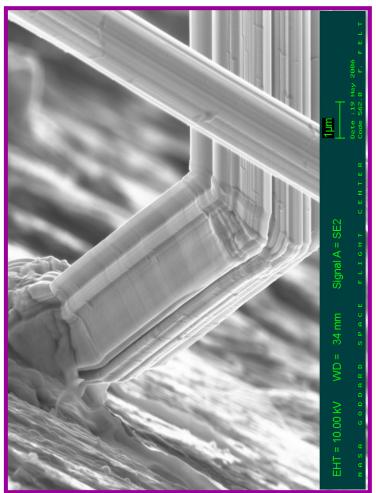
http://nepp.nasa.gov/whisker/reference/tech_papers/1994-downs-zinc-whisker-liability.pdf http://www.fda.gov/bbs/topics/ENFORCE/ENF00065.html

- FDA Class I recall of >1500 apnea monitors made by Electronic Monitors, Inc
 - Failure Mode: Failure to alarm due to defective time delay switch
 - Failure Mechanism: Zinc whiskers from zinc-plated switch components cause low voltage short circuit
 - Investigation:
 It took ~4 years + numerous experts before zinc whiskers recognized as cause of failure due to lack of familiarity with and complexity of identifying metal whiskers
- Bankruptcy and Lawsuits
 - Electronic Monitors files for bankruptcy as a result of losses during this saga
 - Electronic Monitors sues Electro Switch and their suppliers of zinc-plated internal structures for product liability, negligence, fraud, breach of warranty, etc.
 - Case settled out of court
 - Electronic Monitors never recovered; company folded

The Phenomenon of Zinc Whisker Growth and the Rotary Switch

(or, How the Switch Industry Captured the Abominable Snowman)

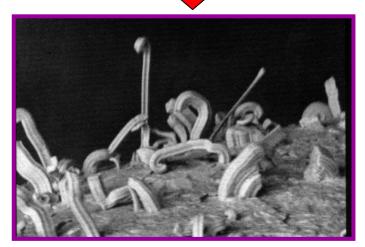
by Jay R. Downs, Spear, Downs and Judin, Dallas and R. Michael Francis, Electro Switch Corp., Raleigh, N.C. *Metal Finishing Magazine, August 1994, pp. 23-25*


May 13, 2008

Metal Whiskers

NASA

What are Tin or Zinc or Cadmium Whiskers?


- Hair-like structures made of a single grain, or only a few grains, that sometimes erupt from a metal. Coatings of Tin, Zinc and Cadmium are especially able to develop whiskers; but, whiskers have been seen on Gold, Silver, Lead, and other metals too
- Growth occurs over time by accretion of metal ions at the base NOT the tip
- LENGTH: Log-normally distributed Rarely up to 10 mm or more (Typically ~1mm or less)
- THICKNESS: Range 0.006 to >10 um (Typical ~ 1 um)
- Fundamental theories for growth mechanism <u>DO NOT</u> enable prediction of the time-dependence of whisker density, whisker lengths or thicknesses
 - To be useful a theory should identify what we must control to make confident predictions
 - Such a theory has remained elusive

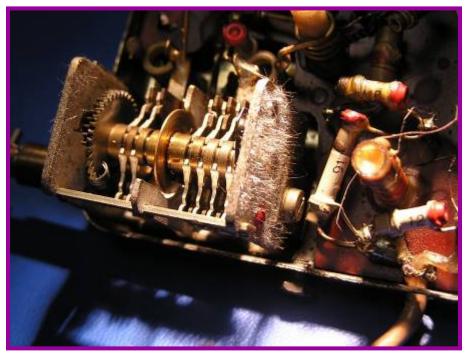
Tin Whiskers on Tin-Plated Electromagnetic Relay Terminals

"Whiskers" are NOT "Dendrites"

- Whisker Growth is
 - Filament-like, rarely branching
 - Outward/Away from surface
- Whisker Growth <u>Does NOT</u> Require
 - Solvents
 - Electric Fields
 - Moisture, Elevated temperature, T-Cycle

- Dendrite Growth is
 - Fern-like, branching
 - Along a surface
- Dendrite Growth <u>DOES</u> Require
 - Solvents to dissolve the metal into ionic species
 - Electric Fields to cause ion migration

Metal Whiskers "The Early Years"



• 1946:

H. Cobb (Aircraft Radio Corp.) publishes earliest "known" account of CADMIUM whiskers inducing electrical shorting between plates of air capacitors used in military equipment. These events occurred during World War II (~1942 – 1943)

• 1952:

Since Cadmium coatings resulted in shorting, Tin and Zinc were used instead. But then K.G. Compton, A. Mendizza, and S.M. Arnold (Bell Labs) reported shorting caused by whiskers from these coatings too!

Tin Whiskers on 1960's Era Variable Air Capacitor

Whisker Resistant Metal Coatings "The Quest"

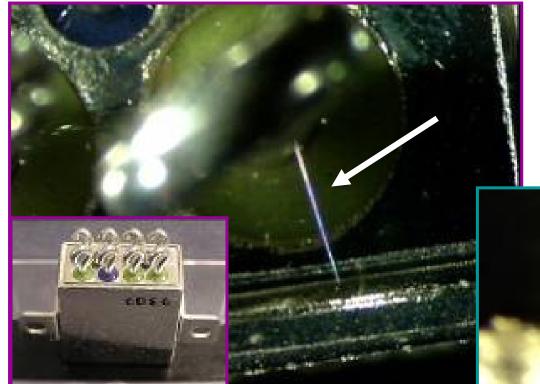
- 1950s and 60's ^{[1] [2]}: Bell Labs worked through the periodic table to determine whether addition of some element to a Tin coating would "quench" whiskering
 - Adding 0.5 1% (by weight) or more of <u>Lead (Pb)</u> into tin works
 - Some additives seem to enhance whiskering
- Since 1990s:

To inhibit whiskers most US MIL specs require adding Pb to tin used around electronics.

- For design margin, the concentration is usually named as 2% to 3% Pb by weight
- What additives quench Zn & Cd whiskers?
 - We don't know, but certainly NOT chromate conversion finishes!

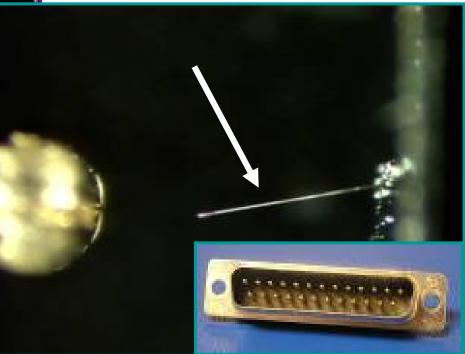
Zinc Whiskers Growing from Zinc-Plated <u>Yellow Chromate</u> Steel Bus Rail

[1] S. Arnold, "Repressing the Growth of Tin Whiskers," *Plating*, vol. 53, pp. 96-99, 1966


[2] P. Key, "Surface Morphology of Whisker Crystals of Tin, Zinc and Cadmium," IEEE Electronic Components Conference, pp. 155-160, May, 1970

May 13, 2008

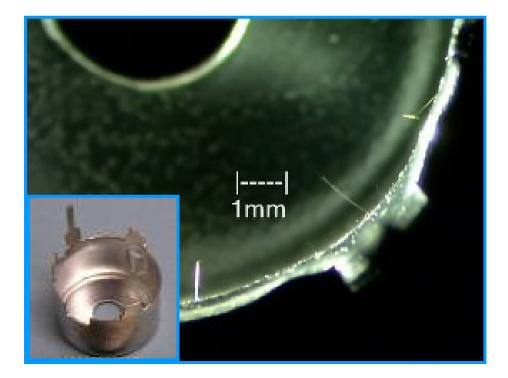
Metal Whiskers

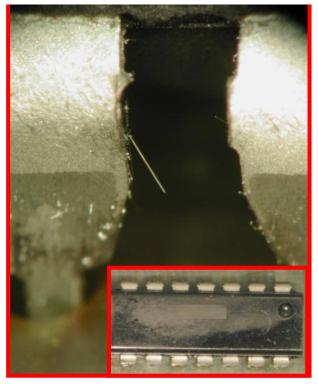

Examples of Metal Whiskers

Tin Plated Electromagnetic Relay Tin Whisker Shorting Terminals and Case

NOTE: Procurement Spec PROHIBITED Tin-Plating!

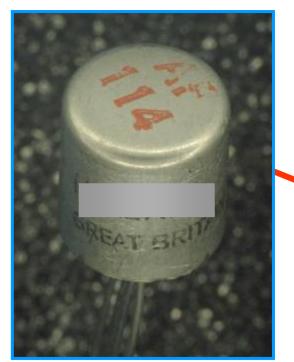
Tin-Plated D-Sub Connector Shell Advertised as "RoHS Compliant"

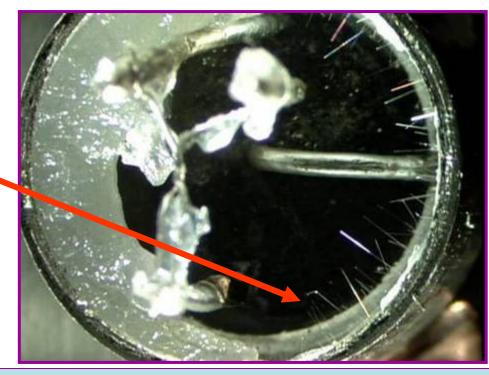

May 13, 2008


Examples of Metal Whiskers

Tin-Plated Transformer Can Tin Whiskers "As Received"

Note: Supplier Changed to Pure Tin WITHOUT Warning Customers


Tin-Plated DIP IC Leads Tin Whiskers Produce Field Failures After 20 Years in Field!


May 13, 2008

Guess What's Lurking Inside?

1960's Vintage Transistor

Transistor Package is Tin-Plated Inside.

Many Vintage Radio Malfunctions Have Been Attributed to Whiskers Shunting Case to Terminals

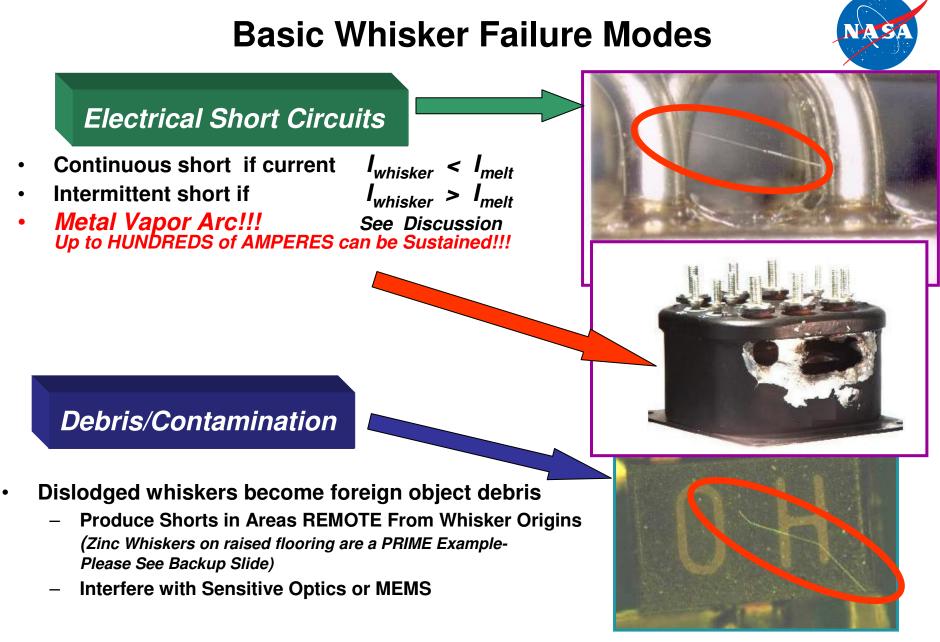
http://www.vintage-radio.net/forum/showthread.php?t=5058

2006- NASA GSFC Presented A Partial History of Documented Metal Whisker Problems

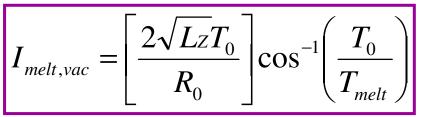
http://nepp.nasa.gov/whisker/reference/tech_papers/2006-Leidecker-Tin-Whisker-Failures.pdf

	A 11 11		I						
Year**	Application		Industry		Failure Cause	Whiskers on?	hiskers on?		
	Military	Military		Cadmium Whiskers Capacitor plates					
	Telecom Equipme		Application		Industry	Failure Cause	Whiskers or	1?	
1954	Telecom Equipme				<u></u>				
1959			Apnea Monitors		Medical (RECALL) Zinc Whiskers		Rotary Switch		
			Duane Arnold Nuclea	Voar**	Application	Industry	Failure Cause		
			Power Station	Tear					
				200	0 GALAXY VII (Side 2)	Space (Complete Loss)	Tin Whiskers	Relays	
			Missile Program "C"			opuee (compiete 2000)			
			Govt. Electronics	200	0 Missile Program "D"	Military	Tin Whiskers	Terminals	
	Telecom Equipme		Telecom Equipment	200	0 Power Mgmt Modules	Industrial	Tin Whiskers	Connectors	
1959	Telecom Equipme		Computer Routers	200	SOLIDARIDAD I (Side 2)	Space (Complete Loss)	Tin Whiskers	Relays	
		1996	MIL Aerospace						
1959	Telecom Equipme	1998	Aerospace Electroni		1 GALAXY IIIR (Side 1)	Space	Tin Whiskers	Relays	
			Computer Hardware		1 Hi-Rel	Hi-Rel	Tin Whiskers	Ceramic Chip Caps	
•		1998	DBS-1 (Side 1)		1 Nuclear Power Plant	Power	Tin Whiskers	Relays	
		1998	Dresden nuclear Pov Station		Space Ground Test Eqp		Zinc Whiskers		
					2 DirecTV 3 (Side 1)	Space	Tin Whiskers	Relays	
1086	F15 Radar	1998	GALAXY IV (Side 2)		2 Electric Power Plant	Power	Tin Whiskers	Microcircuit Leads	
	Heart Pacemaker		on (2) of (0,000 2)		2 GPS Receiver 2 MIL Aerospace	Aeronautical	Tin Whiskers Tin Whiskers	RF Enclosure Mounting Hardware	(nuto)
		1008	GALAXY VII (Side 1)		2 Military Aircraft	MIL Aerospace Military	Tin Whiskers	Relays	(nuts)
	Phoenix Missile		Military Aerospace		2 Nuclear Power Plant	Power	Tin Whiskers	Potentiometer	
	Dresden nuclear		PAS-4 (Side 1)		3 Commercial Electronics		Tin Whiskers	RF Enclosure	
	Station			200	3 Missile Program "E"	Military	Tin Whiskers	Connectors	
	MIL/Aerospace P		Eng Computer Cente		3 Missile Program "F"	Military	Tin Whiskers	Relays	
1988	Missile Program '		SOLIDARIDAD I (Side	200	3 Telecom Equipment	Telecom	Tin Whiskers	Ckt Breaker	
		1999	South Texas Nuclear		4 Military	Military	Tin Whiskers	Waveguide	
					5 Communications	Radio (1960s vintage)	Tin Whiskers	Transitor TO Packag	je
		199X	Telecom Equipment	200	5 Millstone Nuclear Power	Power	Tin Whiskers	Diode (Axial Leads)	

These are ~10% of the Problems We Know About So Why Do People Continue to Use Tin, Zinc, Cadmium?


May 13, 2008

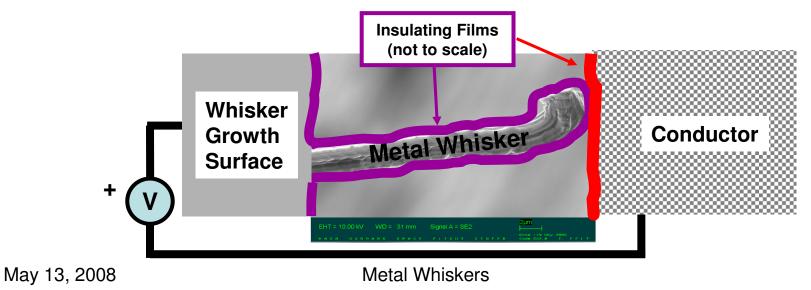
"There is a name for those who suppose that doing the same thing will produce different results.


That name is 'Idiot'."

- Albert Einstein

Metal Whisker Melting Current -- Pt. 1 (In Vacuum)

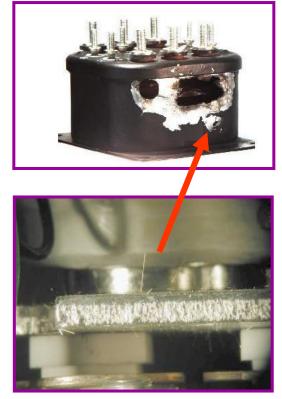
See Backup Slides for Derivation


- Where $Lz \sim 2.45^{*}10^{-8} (V/K)^{2}$ is the Lorenz number, $T_{melt} = melting$ temperature, $T_{0} = ambient$ temperature, $R_{0}^{melt} = whisker$ resistance at ambient

Material	T _{melt}	l _{melt, vac}	$V_{melt} = R_0 * I_{melt, vac}$
Tin	505.1K	87.5 mV / R ₀	88 mV
Cadmium	594.2K	97.1 mV / R ₀	97 mV
Zinc	692.7K	104.4 mV / R ₀	104 mV

Metal Whisker Melting Current -- Pt. 2

- Electrically insulating films naturally form on metal surfaces INCLUDING surfaces of metal whiskers
 - Examples: oxides, hydroxides, sulfides, moisture films, etc.
- Direct MECHANICAL contact by the whisker to another conductor does NOT guarantee ELECTRICAL contact
 - For Electrical Contact, the potential difference must exceed "dielectric breakdown" of the insulating films
 - For tin and zinc whiskers, independent groups have confirmed the film breakdown can range from ~ 0.2V to ~ 45V


Sustained Metal Vapor Arcing Initiated by Metal Whisker

- When a metal whisker shorts two conductors at different potentials, a sustained arc can occur if
 - Current is high enough to vaporize the whisker (i.e., metal gas)
 - Voltage is high enough to ionize the metal gas
- Sustained arcing between metal conductors is possible for voltages as low as ~12 to 14 volts when
 - Arc gap is <u>SMALL</u> ~ a few tens of microns
 - Available current > ~100 to 300 mA
 - See "Electrical Contacts Part III" by Paul G. Slade
- However, as arc gap increases, sustaining the arc requires
 - Higher voltage to ionize the metal gas
 - Higher current to boil enough additional metal gas to keep plasma dense enough to sustain it
 - Vacuum (i.e., low pressure) is NOT required, but can reduce the threshold voltage and current required for arcing
- Relevant metal vapor arc testing by NASA of FM08 style fuses with metal filaments ~5 mm long
 - ~75 volts at more than 30 amperes is needed to generate a sustained arc across this arc gap when P ~1 torr

May 13, 2008

Metal Whiskers

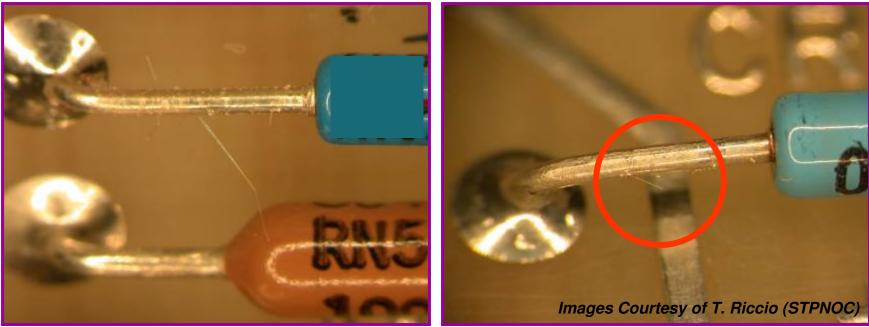
Tin Whiskers Growing on Armature Of Relay Produced Metal Vapor Arc

G. Davy, "<u>Relay Failure Caused by Tin</u> <u>Whiskers</u>", Northrop Grumman, Technical Article, October 2002 http://nepp.nasa.gov/whisker/reference/tech_ papers/davy2002-relay-failure-caused-by-tinwhiskers.pdf

How do People with "Whiskers" Cope?

My Whisker <u>"Stress Relaxation Theory"</u>

Man with "Facial Whiskers" Does YOGA!


Men with "Metal Whiskers" Find Innovative Ways to Relieve Stress

A Case for Whisker Mitigation Strategies?

Tin Whiskers on Tin-Plated Axial Leaded Diodes

- Diode Leads were <u>NOT Hot Solder Dipped</u> prior to assembly
- PWB and components were <u>NOT Conformal Coated</u>

Three Whisker Mitigation Strategies

Mitigation – to make <u>less</u> severe or painful Merriam-Webster Dictionary

Risk "Mitigation" ≠ Risk "Elimination"

- Avoid Use of Whisker Prone Surface Finishes
 - Perform materials composition analysis at incoming inspection using X-ray Fluorescence (XRF), Energy Dispersive X-ray Spectroscopy (EDS), etc.
 - "Trust your supplier, But VERIFY!"
- Conformal Coat: Electrically Insulating Barrier
 - Benefit #1: When applied on top of a whisker prone surface, conformal coat can sometimes keep whiskers from pushing through
 - Benefit #2: When applied to a distant conductor, can block whiskers from electrically shunting distant conductors
 - Benefit #3: Provides insulating barrier against loose conductive debris
- Remove/Replace Tin Finishes When Practical
 - Hot Solder Dip using lead-tin (Pb-Sn) solders
 - "First, Do No Harm" Principle

NASA Goddard Whisker Mitigation Study Conformal Coat (Uralane 5750* Polyurethane) ~9 Years of Office Ambient Storage

Specimens:

•

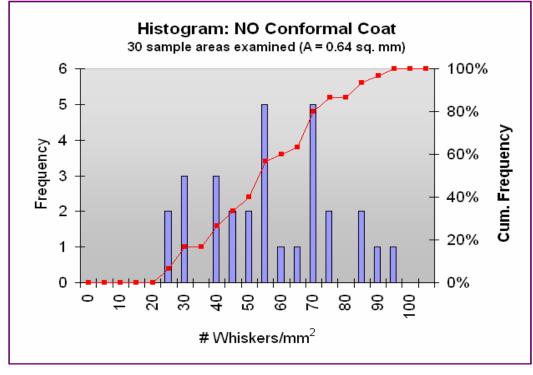
- 1" x 4"x 1/16" Brass 260
- Tin-Plated 200 microinches
- A few intentional scratches created after plating to induce localized whisker growth

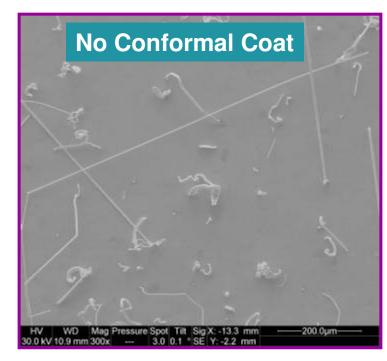
Conformal Coating:

- Uralane 5750 on ½ of sample
- Nominal Thickness = 2 mils
- Locally THIN Regions also examined

• Storage Conditions:

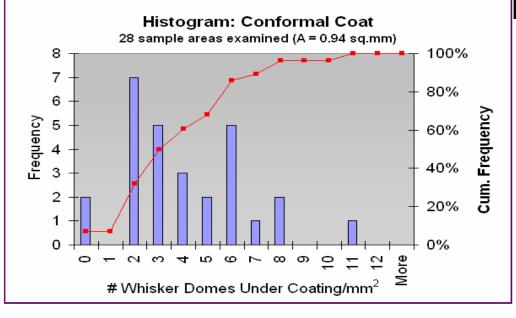
– Office Ambient ~ 9 years

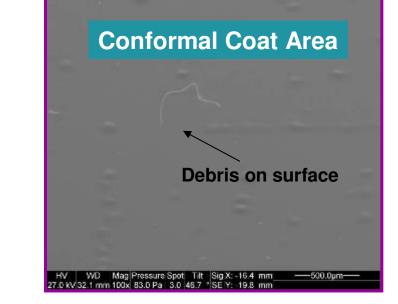



* Uralane™ 5750 now known as Arathane™ 5750

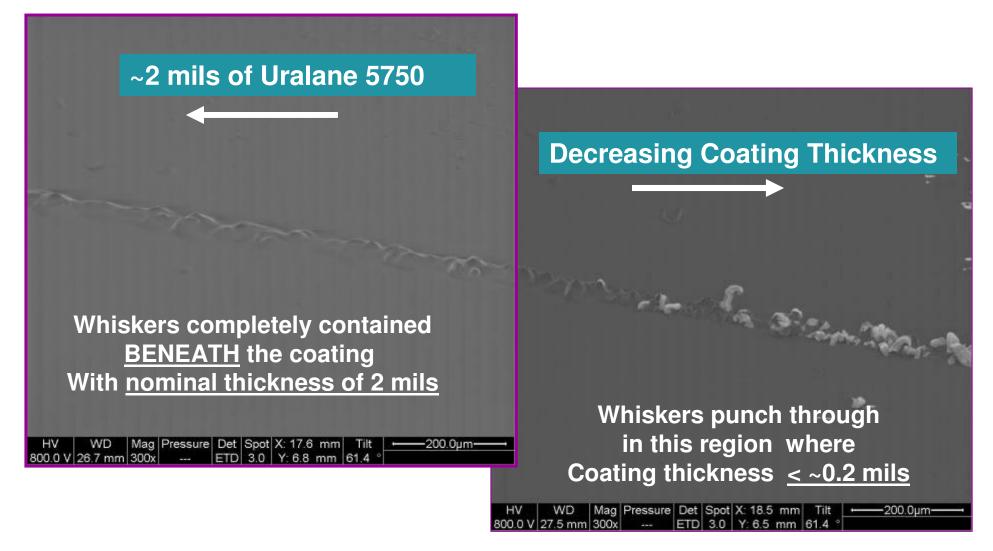
Control Areas – <u>No</u> Conformal Coat 9-Years of Office Ambient Storage

- Control Areas Grew Whiskers Abundantly within the First Year. After 9 years of storage we found the following:
- 30 areas each 0.64 mm² were randomly examined for whisker density
- Avg: 55 ± 19.6 whiskers / mm²
- Range: 23 to 95 whiskers / mm²




Uralane 5750 – 2 Mils Thick 9-Years of Office Ambient Storage

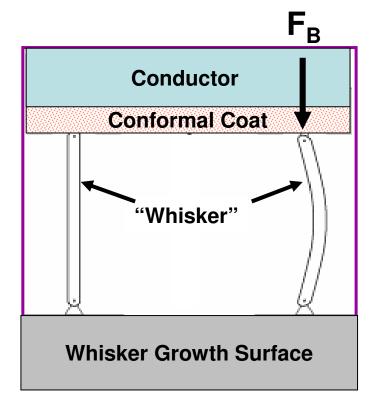
- Conformal Coated Areas Grew Whiskers Too within the First Year. After 9 years of storage we find the following:
 - To date ALL whiskers are contained beneath the coating that is <u>2 mils thick</u>
 - SEM cannot see INTO coating. Thus we see only "domes" caused by whiskers that lift coating slightly
 - Avg: 3.4 ± 2.6 domes / mm²
 - Range: 0 to 10.6 domes / mm²



We suspect we are only counting "thick" whiskers in this statistic because the "thin" ones mechanically buckle before they can lift the coating enough to produce visible "domes"

Whisker Puncture vs. Coating Thickness

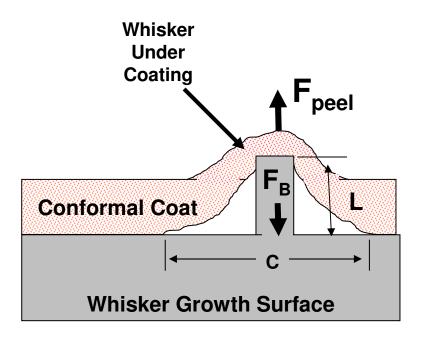
Uralane 5750 Conformal Coat -9-Years of Office Ambient Storage


Euler Buckling Axial Force Required to Buckle a Metal Whisker

$$F_B = \frac{\pi^2 EI}{(KL)^2} \approx \left(\frac{\pi^3 \cdot E}{32}\right) \left(\frac{d^4}{L^2}\right)$$

- E = Young's Modulus of whisker material,
- I = Area Moment of Inertia,

(e.g. I = π d⁴ / 64 for circular cross section)


- L = Length of whisker,
- K = Column Effective Length Factor
 - K = 0.5 for whisker fixed at both ends
 - K = 0.7 for fixed at one end, pinned at other

Whiskers Lift and Peel Conformal Coat Until Whisker Buckles <u>OR</u> Coating Fails

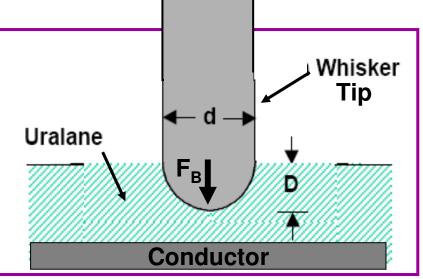
(F_{peel} vs. F_{Buckle})

- As whisker first emerges it is short and stiff thus $F_B > F_{peel}$ and whisker begins to lift the coating forming a "circus tent" with height L = length of whisker;
- "Tent" joins the surface at a circle of circumference C ~ 2πQL,
 - Q describes the details of tent-like shape
- To peel conformal coating up and away from the surface, one needs to apply a force (F_{peel}) proportional to the circumference:
 - $F_{peel} = \Phi * C = 2 pi Q \Phi L$ $\Phi = peel strength of material which describes the$ adhesion of the coating to the tin, and the effectof the separation angle. It also depends on therate at which the coating is peeled away.

Uralane 5750 has better self-cohesion than adhesion to a tin surface

Additional Analysis Pending

Will a Whisker Buckle Before It's Tip Punctures Conformal Coating on a Distant Surface?


The displacement of the conformal coat due to a whisker pushing against the coating is:

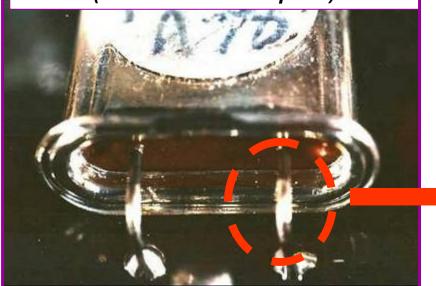
$$D = \left(\frac{1-\nu^2}{E_{coat}}\right) \left(\frac{F_B}{d}\right) \approx \left(\frac{\pi^3}{32}\right) \left(1-\nu^2\right) \left(\frac{E_W}{E_{coat}}\right) \left(\frac{d^3}{L^2}\right)$$

Where

- D = Displacement of conformal coat
- v = Poisson's ratio

- d = "Diameter" of whisker
- L = Length of whisker
- F_B = Euler Buckling Strength of the whisker

- Numerous sorts of coatings have been tried:
 - Reports of success vary from "none" to "perfect", sometimes for the same sort of coating.
- NASA GSFC has used Uralane 5750, applied to pre-primed tin-plated surfaces to a thickness of 2 mils (=50 micrometers) +/- 10%:
 - After ~9 years of office ambient storage, these surfaces have whiskered abundantly, but the number of whiskers escaping through the 2 mil thick areas has been zero
- Dr. Thomas Woodrow (Boeing) has studied Urethane (acrylic) coatings, a silicone coating, and Parylene C coating of varying thicknesses up to ~ 4 mils (= 100 micrometers):
 - Some whiskers have penetrated even the thickest coatings when exposed to 25 ℃ / 97% R.H.
 - "Evaluation of Conformal Coatings as a Tin Whisker Mitigation Strategy, Part 2", T. Woodrow, SMTAI, Sept. 2006 <u>http://nepp.nasa.gov/whisker/reference/tech_papers/2006-Woodrow-Conformal-Coating-PartII.pdf</u>


- Conclusion 1:
 - Uralane 5750, applied to at least 2 mils thickness, is a substantial improvement over an uncoated surface.
- Conclusion 2:
 - It is possible to suppose the surface is protected when it is not.
 - Coating processes can leave "weak zones" of thin coating allowing vertical escape
- Conclusion 3:
 - Even "poor" coatings can offer some protection against a whisker coming from a distant source and attempting to contact the protected surface --- long whiskers bend easily (Euler Buckling).
 - Conformal coat protects against a conductive bridge from detached whiskers lying across a pair of conductors

Hot Solder Dip Benefits & Limitations

Field Failure ONE Year After Assembly

Crystal with Tin-Plated Kovar Leads (with Nickel Underplate)

- Leads were <u>Hot Solder Dipped</u> (Sn63Pb37) <u>within 50 mils</u> of Glass Seal BEFORE Mounting to enhance solderability
- Dip was not 100% of leads due to concerns of inducing harm to glass seal

 Tin Whiskers (~60 mils) Grew on

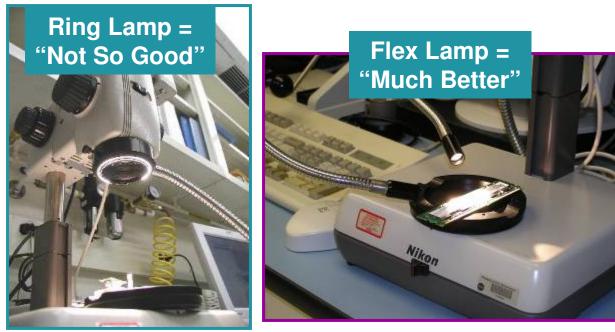
 <u>NON-Dipped</u>

 Region Shorting to Case

 Causing Crystal to Malfunction

- No Whiskers on Hot Solder Dipped Surface
- ABUNDANT whiskers on the Non-Dipped Surface

May 13, 2008


EDGE OF

Optical Inspection for Metal Whiskers

- Basic Equipment:
 - Binocular Microscope
 - Light Source: Flex Lighting PREFERRED over Ring Lamp
- Freedom to tilt sample and/or lighting to illuminate whisker facets is VERY IMPORTANT

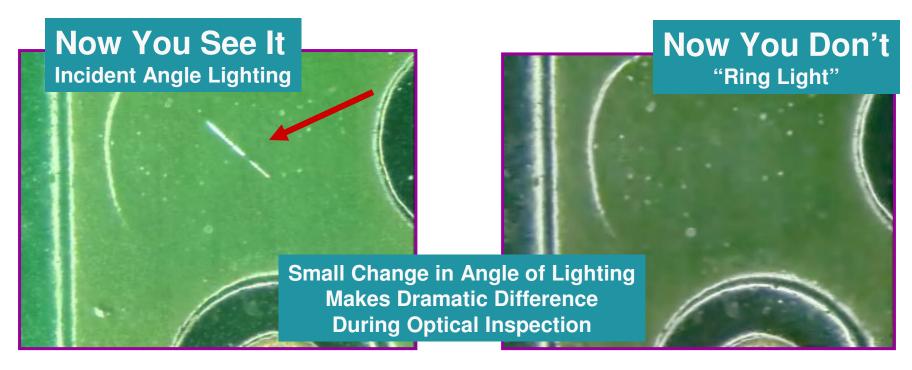
May 13, 2008

Metal Whiskers

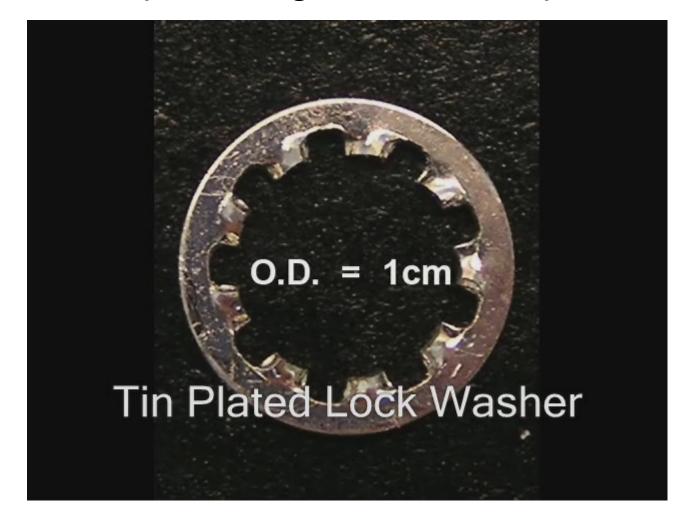
Evidence of "Absence of Whiskers"? (Optical Microscopy)

Tin-Plated Lock Washer

The absence of evidence is NOT evidence of absence


Metal Whiskers

Field Technicians and Failure Analysts Need To Be Acquainted with Metal Whiskers!!!


NASA GSFC has published videos to aid in optical inspection for metal whiskers

http://nepp.nasa.gov/whisker/video

Video Demonstration Optical Inspection For Metal Whiskers (Click Image to Start Video)

Contact Information

Jay Brusse

Perot Systems at NASA Goddard Space Flight Center Jay.A.Brusse@nasa.gov

Work Performed in Support of the NASA Electronic Parts and Packaging (NEPP) Program

Acknowledgment to Dr. Michael Osterman University of MD – Center for Advanced Life Cycle Engineering (CALCE)

NASA Tin and Other Metal Whisker WWW Site

http://nepp.nasa.gov/whisker

May 13, 2008

Metal Whiskers

Backup Slides

Why Are Tin, Zinc, Cadmium Still Used?

- Not all Tin (or Zinc or Cadmium) surfaces whisker!
 - Rough estimate: 3% to 30% do whisker.
- Not all metal whiskers cause shorts
 - Environment (geometry and electrical potentials matter).
 - Rough estimate: 3% to 30% do short.
- Not all whisker-induced shorts are traced to whiskers
 - They are very hard to see and failure analysis techniques often destroy evidence
 - Rough estimate: 0% to 10% are correctly traced.
- Not all identified whisker adventures are reported
 - Rough estimate: 0% to 3% are reported, once identified
- Hence, we expect between 0.00% and 0.03% of shorting problems caused by these coatings to be reported
 - While some 0.1% to 10% of these coatings are actually causing shorts.
 - With such a few public cases, many say "What, me worry?"
- Whiskering is dramatically inhibited when 0.5% (or more) lead (Pb) is added to Tin coatings: the shorting rate then approaches zero
 - This has been the case for the Hi-Rel community
 - But Pb use is being restricted by international legislation, and so the shorting rate may jump to 10% from zero => SWATCH GROUP <==

"The Five Stages of Metal Whisker Grief"

By Henning Leidecker

Adapted from Elisabeth Kubler-Ross in her book "On Death and Dying", Macmillan Publishing Company, 1969

Denial

"Metal whiskers?!? We ain't got no stinkin' whiskers! I don't even think metal whiskers exist! I KNOW we don't have any!"

Anger

"You say we got whiskers, I rip your \$%#@ lungs out! Who put them there --- I'll murderize him! I'll tear him into pieces so small, they'll fit under one of those *^&\$#% whiskers!"

Bargaining

"We have metal whiskers? But they are so small. And you have only seen a few of them. How could a few small things possibly be a problem to our power supplies and equipment? These few whiskers should be easy to clean up."

Depression

"Dang. Doomed. Close the shop --- we are out of business. Of all the miserable bit joints in all the world, metal whiskers had to come into mine... I'm retiring from here... Going to open a 'Squat & Gobble' on the Keys. "

Acceptance

"Metal whiskers. How about that? Who knew? Well, clean what you can. Put in the particle filters, and schedule periodic checks of what the debris collectors find. Ensure that all the warrantees and service plans are up to date. On with life."

A Few Recent Whisker Experiences: *It's Not Just Tin Whiskers!!!*

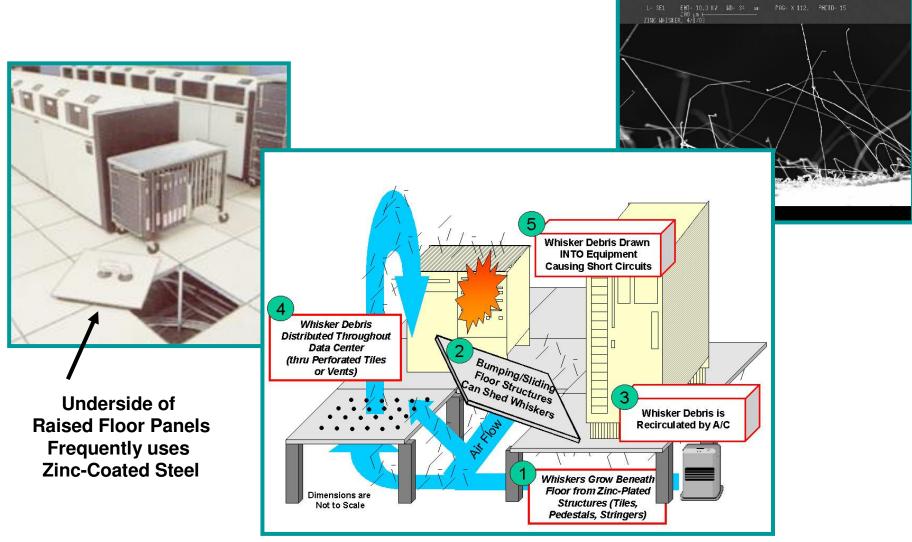
• Tin Whiskers:

- 2005: Tin Whiskers on diode leads shut down Connecticut Nuclear Power Plant
- 2006: Tin whiskers on <u>card rails</u> discovered in <u>Space Shuttle Transportation System</u> Some 100 to 300 million whiskers were in OV-105's boxes
- 2006: Tin whiskers on <u>watch crystals</u> reported by <u>SWATCH Group</u>. 30% of new RoHS-compliant Sn-Cu solder sprouting whiskers. 5% catastrophically shorted within months.

• Zinc Whiskers:

- 2005: Zinc whiskers on <u>raised floor tiles</u> cripple <u>Colorado State Government</u> data center. Forced to build a new "disaster recovery center"
- 2005: Zinc whiskers on <u>raised floor tiles</u> destroy 75% of the computer equipment in a particular data center. <u>Investigation takes ~8 months to properly identify root cause</u>
- 2006: Zinc whiskers identified as root cause of persistent <u>NAVY weapon system</u> <u>failures</u>

• Cadmium Whiskers:


- 2006: Cadmium whiskers found on *electrical switch* proposed for spaceflight program
- 2007: Cadmium whiskers on *connector shells* cause failure during T-Vac testing

May 13, 2008

Dozens of Zinc Whisker Disasters!!!

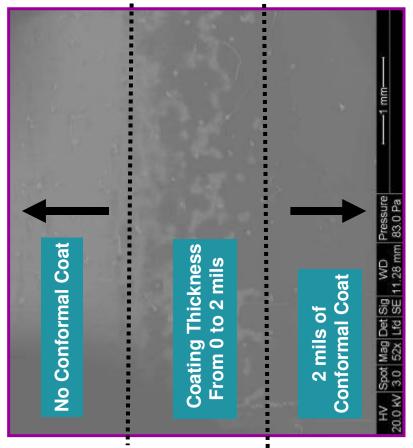
Computer Room Raised Floor Panels and Support Structures

http://nepp.nasa.gov/whisker/other_whisker/index.htm#zinc

Metal Whiskers

Another Case for Whisker Mitigation Strategies?

Metal Whiskers on External Case of Potentiometers



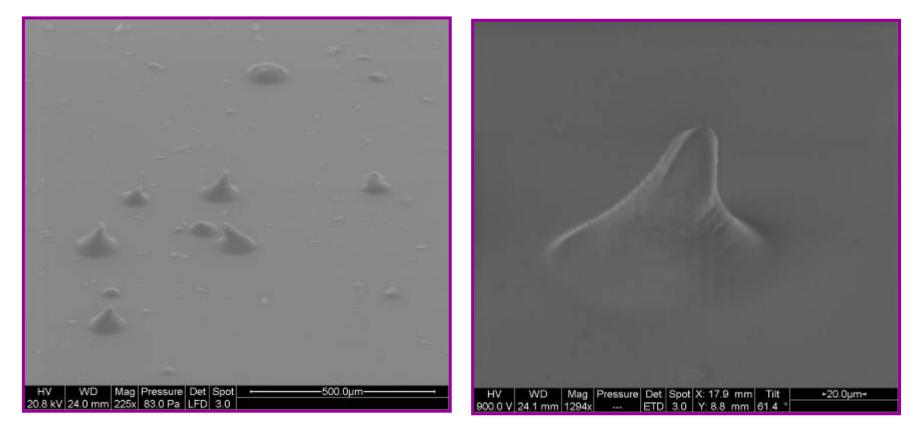
- Potentiometer cans are electrically connected to circuitry
- Metal whiskers bridging between the cases caused circuit malfunction
- No electrically insulating materials were used on these cases to act as a barrier to electrical shorting

NASA Goddard Whisker Mitigation Study Conformal Coat (Uralane 5750* Polyurethane) ~9 Years of Office Ambient Storage:

- Coating Thickness Can Vary Depending on Process Parameters
- Spray and masking techniques used produced a "transition" region ~2 mm wide where the conformal coating thickness was variable between 0 and 2 mils
 - One must understand their own processes to ensure the coating thickness is sufficient everywhere you intend it to be!!

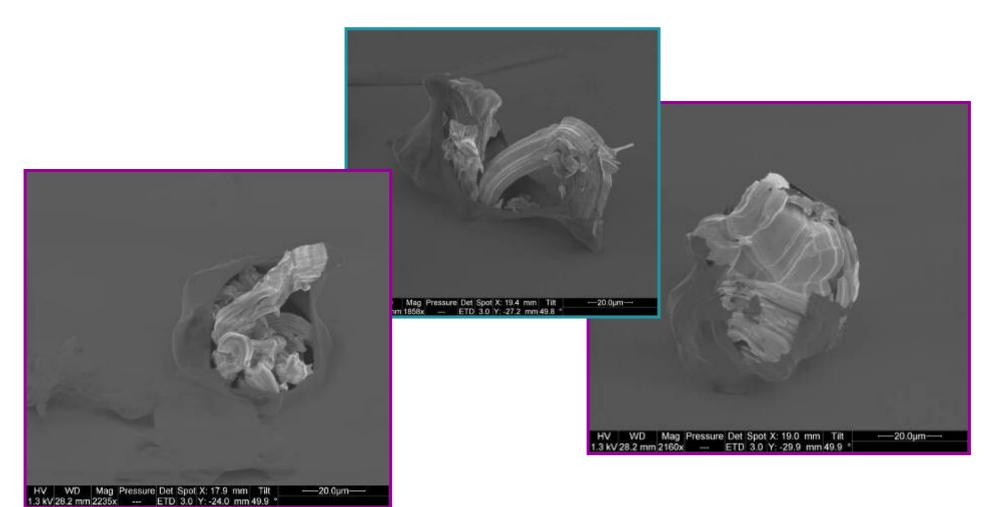
NASA GSFC Conformal Coat Tin Whisker Test Coupon

* Uralane[™] 5750 now known as Arathane[™] 5750


May 13, 2008

٠

Tin Whiskers Forming "Circus Tents" in Thin Uralane 5750 Conformal Coat -9-Years of Office Ambient Storage

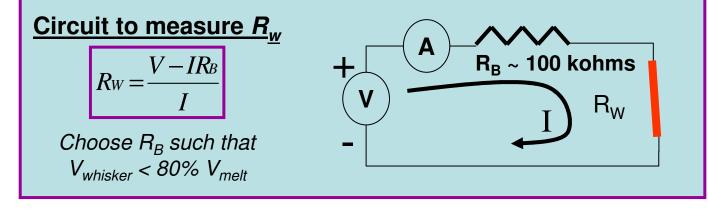


Coating Thickness < 0.5 Mil

Tin Whiskers Rupturing THIN Coating ~0.1 to 0.2 *Mils* Uralane 5750 Conformal Coat 9-Years of Office Ambient Storage

May 13, 2008

Metal Whiskers



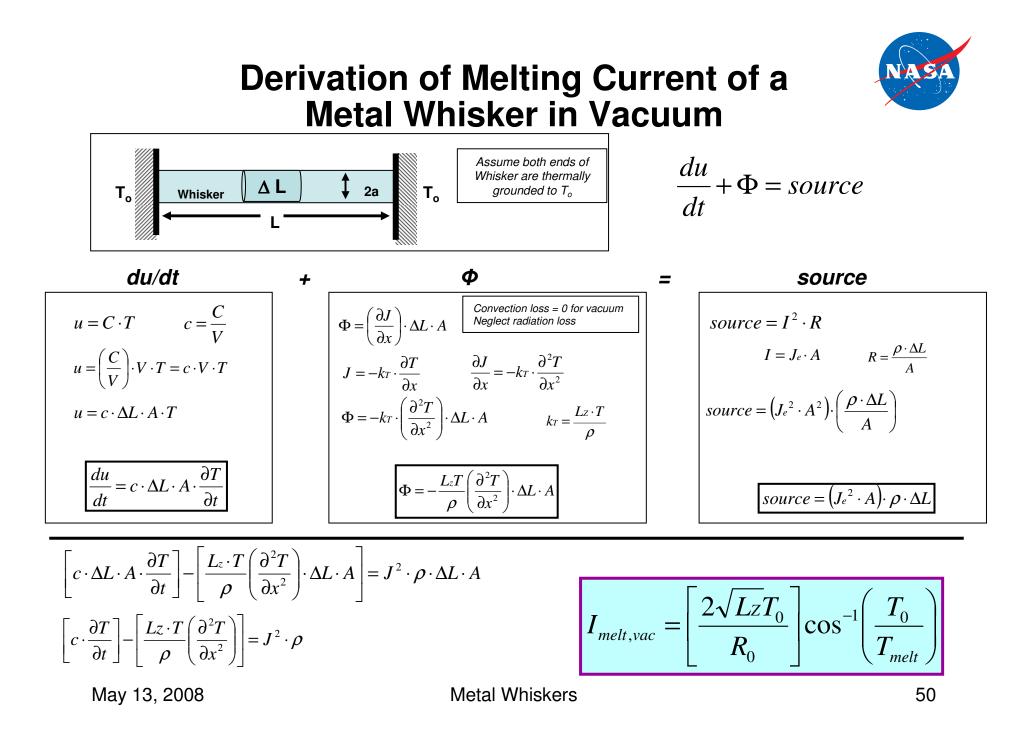
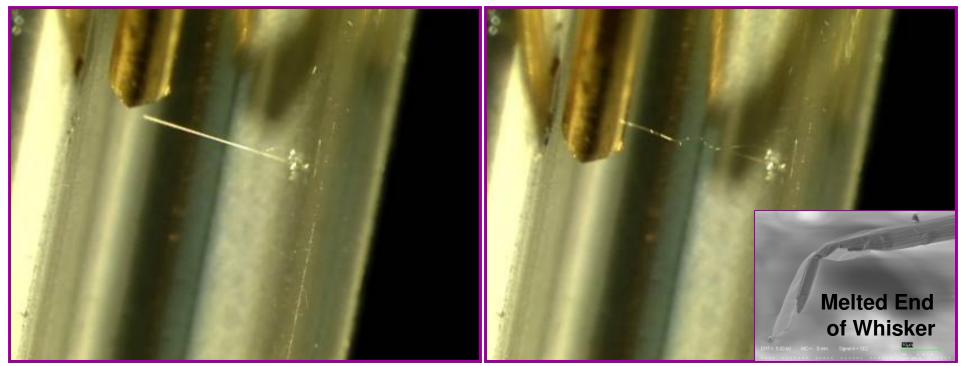

Thank Goodness for Euler Buckling and Conformal Coat on this PWB!!!

Photo Credit: M&P Failure Analysis Laboratory The Boeing Company Logistics Depot Circuit to Measure Resistance of a Metal Whisker


- Use of a simple "Ohmmeter" to measure the resistance of a metal whisker is NOT preferred
 - Ohmmeter may supply V_{out} < V_{breakdown} for the insulating films (oxides, moisture) that form on a metal whisker
 - Ohmmeter may supply $V_{out} > V_{melt}$ causing the whisker to melt before resistance can be measured
- Instead, a variable power supply and a ballast resistor should be used to overcome the above complications
 - Adjust V_{out} > V_{breakdown} of insulating films on whisker
 - When $V_{out} > V_{breakdown}$, R_B quickly drops $V_{whisker} < V_{melt}$

An Example of "Melting" a Tin Whisker

Before Contact

1. Gold-Plated Test Probe has +3 Volts Relative to Tin Whisker

After Contact

- 1. Tip of whisker micro-welds to gold test probe
- 2. Whisker melts mid-length
- 3. Small section of whisker root remains attached to substrate