Whiskers of Tin-Lead (Sn-Pb) on REFLOWED Die Attach Solder Used in the Manufacture of a Laser Diode Array

Images/Failure Analysis Provided by
Dr. Henning Leidecker/NASA Goddard Space Flight Center
Chris Greenwell/QSS Group, Inc.

Compiled by
Jay Brusse/QSS Group, Inc.
Intent

• Intent of this presentation is to depict a mechanism for creating damaging electrical shunts on laser diodes:

 Failure Mechanism =

 Metal Whisker Formation from Die Attach Solder

• Key Observations:
 – Metal Whisker Formation from **Sn-Pb Eutectic Solder** (Sn63Pb37)
 – Whiskers Formed on Die Attach Solder that had been **Reflowed**
 – Whisker **LENGTHS as Small as 5 microns** sufficient to create shunt
In 2003 an evaluation of **GaAs Laser Diode Arrays** at NASA Goddard Space Flight Center revealed “Metal Whisker Formation” emanating from the Reflowed Eutectic Tin-Lead Solder die attach material (Sn63Pb37).

Evidence of electrical shunts created by these whiskers is documented herein.

Salient Factors

- **Die Attach Material:** Eutectic Tin-Lead (Sn63Pb37) Solder
- **Whisker Lengths Observed:** 25-30 microns max.
- **Shunting Distance:** 2.5 - 3.0 microns (Heat Sink to Laser Diode)

Operational Factors:

- **Normal frequency of pulsing:** 10-40 Hz (up to 500 Hz during accelerated test)
- **Diode Junction Temp Rise:** up to 40°C during a single pulse (normal ops.)
- **Solder Temp Rise:** less than junction temp rise (not calculated)
General Construction of Laser Diode Array (Mostly Disassembled)

GaAs Laser Emitter “Bars” (These Bars are Shown in Detail in Subsequent Slides)

- Gold Wires
- Indium Solder
- Area where 6 “Bars” Removed
- Alumina Substrate

Shown is a Mostly Disassembled “G9” Unit with 3 Laser Emitter Bars Still Intact (6 Removed)
Similarly Constructed Devices Have Been Made with 2, 7, 11 or 16 Bars
1 Tungsten-Copper (W-Cu) Heat Sink
2 “Thin” Layer of Sn-Pb Solder (Sn63Pb37) Die Attach Material Joins 1 & 3
3 GaAs Semiconductor Bar (“Light Emitting” Region)
4 Gold Bond Wires (1 mil diameter)
5 Carbon Tape (to facilitate handling for SEM inspection only)
6 Aluminum Stage (to facilitate handling for SEM inspection only)
Enlarged View of GaAs Die + Heat Sink
(of Area Highlighted on Previous Slide)

1. W-Cu Heat Sink
2. Sn-Pb Solder Die Attach Material
3. GaAs Semiconductor Bar

Tin-Lead (Sn-Pb) Whiskers!!!
Note: Shunting Distance is **only 2.5 - 3 microns** Between Light Emitting Region and Heat Sink

Tin - Lead (Sn/Pb) Whisker

Gallium Arsenide Substrate

Eutectic Sn-Pb Solder Die Attach Region

W-Cu Heat Sink. Sn/Pb die attach solder has REFLOWED on top

December 2003
Analysis Confirms These ARE **Sn-Pb Whiskers**

Reflowed Eutectic Sn-Pb Solder Die Attach Material is ONLY Possible Source of Sn and Pb Here

SEM/EDS Analysis Results
One GaAs Laser Bar “Operating” at Low Current Levels

~ 1 Amp is Being Passed Through Laser Bar to Locate the Position of the Recombination Regions Around the Semiconductor Junctions.

NOTE: the Proximity of the Active Region to the Heat Sink

“Light Emitting AlGaAs Laser Diode Regions Between Bright Spots

GaAs Substrate

W-Cu Heat Sink

Each GaAs Laser Bar has up to 79 Laser Diodes

FYI: When Operated at Higher Current Levels above the Lasing Threshold, the Region BETWEEN the bright spots will Lase perpendicular to the die while the bright spots shown here (under low current operation) will become darker.
What Harm Could the Sn-Pb Whiskers Do?

Are those Dark Spots Sn-Pb Whiskers Blocking the Emission of Light or Possibly Shunting the Heat Sink to the Laser Diodes?
Did a Sn-Pb Whisker Cause *This*?

GaAs Substrate

AlGaAs Laser Emitter Region

Interference Pattern Indicative of Overheating

W-Cu HEAT SINK
Optical Image of Whisker Shunting Heat Sink to Laser Diode

- GaAs Substrate
- Sn-Pb Whiskers
- W-Cu Heat Sink
- Interference Pattern Indicative of Overheating

20μm
Sn-Pb Whisker Induced Shorting

Is THIS the Tip of a Melted Sn-Pb Whisker?

“Splatter” Remants from a Melted Sn-Pb Whisker?

SEM Image of Whiskers on Previous Slide
Discussion

• **Q:** What Problems Could These Types of Whiskers Create?
• **A:**
 1) Direct Shunt Between Heat Sink to Laser Diodes
 (Shorting distance is ONLY ~ 2.5 to 3.0 microns)
 2) “Block” Light Emission if in Direct Path of Light Source
 • Secondary Effect of Blocking may be light reflected from whiskers may generate
 some additional local heating of Laser Diode

• **Q:** What Made These Whiskers Grow?
• **A:** **UNKNOWN.**

• Speculation!!! -
 – **Theory #1:** Metal from solder die attach migrates via ELECTROMIGRATION under
 high current densities used in this device application
 • Similar whisker growths reported with other die attach materials including pure Tin, Tin/Lead,
 Indium and Tin/Gold (90/10).

 – **Theory #2:** CTE mismatch of materials (solder, heat sink, die) coupled with thermal
 cycling from “pulsing operation” of laser diode induces observed whisker growth
 • During manufacturing some of the Sn/Pb die attach solder extends to the edge of the GaAs
 die (not on it). Also some Sn/Pb solder wets the edge of the W-Cu heat sink.
 • Thermal cycling caused by normal “pulsing” operation (10 - 40 Hz) of this device creates, a
 \(\Delta T \) up to 40°C at the semiconductor junction (somewhat “less” at the solder).
More Sn-Pb Whisker Images

December 2003 Sn-Pb Whiskers
More Sn-Pb Whisker Images

December 2003
Sn-Pb Whiskers
More Sn-Pb Whisker Images

December 2003

Sn-Pb Whiskers
More Sn-Pb Whisker Images

L = SE1 EHT = 25.0 KV WD = 27 mm MAG = X 2.00 K PHOTO = 44
20.0μm

December 2003 Sn-Pb Whiskers
Contact Information

Dr. Henning Leidecker
NASA Goddard Space Flight Center
301-286-9180
Henning.W.Leidecker@nasa.gov

Chris Greenwell
QSS Group, Inc. (@ NASA Goddard)
301-286-0945
Christopher.J.Greenwell.1@gsfc.nasa.gov

Jay Brusse
QSS Group, Inc. (@ NASA Goddard)
301-286-2019
Jay.A.Brusse.1@gsfc.nasa.gov

NASA Goddard Tin (and Other Metal) Whisker WWW Site
http://nepp.nasa.gov/whisker

December 2003
Sn-Pb Whiskers