Tin Whiskers: Attributes and Mitigation

Presentation to:
Capacitor and Resistor Technology Symposium 2002
New Orleans, LA
March 26, 2002

Jay Brusse
QSS Group, Inc. @ NASA Goddard

Gary Ewell
The Aerospace Corp.

Jocelyn Siplon
The Aerospace Corp.

Mission Success Starts With Safety
Outline

• Why ANOTHER Paper on Tin Whiskers?

• What are Tin Whiskers?
 – Examples
 – Failure Modes
 – Attributes

• Experience History

• Tin Whiskers on Ceramic Capacitors (MLCCs)

• Whisker Mitigation Strategies

• Conclusions
Why **ANOTHER** Paper on Tin Whiskers?

The PAST:
- Tin Whiskers Known for ~60 Years
- HUNDREDS of Independent Studies
- Numerous Disparities exist in Published Literature

The PRESENT: Combination of Concerning Factors
- Pending Pb-Free Legislation COULD Introduce More Whisker Prone Items
- Continuous Reduction in Circuit Geometries and Power Reduction
- Lack of Fundamental Understanding of Whisker Growth
- Lack of “Accelerated” Test Methods
- “New” Discoveries of Whiskers on Items thought to be “Immune”

This WORK Provides:
- One Reference to Collate Known/Unknown Attributes of Tin Whiskers
What are Tin Whiskers?

• “Hair-Like” Structures of Tin that May Grow Spontaneously from Items with Tin Finishes
 – Other pure metal (Zn, Cd) electroplates and alloys like Sn-Cu, Sn-Bi and even some Sn-Pb finishes may also form whiskers but not as readily as pure Sn

• Growth Process is Driven by Mechanical Stress Relief Mechanism
 – COMPRESSIVE Stress WITHIN Sn Layer
 – Electrical Bias, Contamination NOT Needed
 • Whiskers are NOT Dendritic Growths

Dendrites vs. Whiskers
Whisker Shapes and Dimensions

- Filaments
- Straight/Kinked
- Length: up to 1 cm

- Nodules
- Solid
- Striated
- Pyramids
- Diameter: 0.006 µm to 10 µm
Sneaky Tin Whiskers!!!

- **Growth Rate**
 - Up to 9 mm/yr
 - Typically Substantially SLOWER!!!

- **Incubation Period (Dormancy)**
 - As Short as a Few Days after Plating
 - **AS LONG AS MANY YEARS!!!**

These Attributes are UNPREDICTABLE thus Presenting a MAJOR Challenge
Examples of EEE Components with Tin Whiskers

Active Components

- "Matte" Tin DIP IC Leads
- Hybrid Package Lid
- Transistor Header
Examples of PASSIVE EEE Components with Tin Whiskers

It’s about MORE than Just Active Components

Terminal Lugs

SMT Fuses

Test Points

Relay Terminals

Ceramic Caps

March 26, 2002

Tin Whiskers: Attributes and Mitigation
Tin Whisker Failure Modes

- **Electrical Short Circuits**
 - Permanent (if current < 10’s of mA)
 - Intermittent (if current > 10’s of mA)

- **METAL VAPOR ARC in VACUUM**
 - If $V > \sim 13\ V$ and $I > 10$’s of Amps, then Whisker can Vaporize into Highly Conductive Plasma of Tin Ions
 - Plasma can Form Arc Capable of Carrying HUNDREDS OF AMPERES
 - Arc is Sustained by Tin Evaporated from Surrounding Areas

- **Debris/Contamination**
 - Interfere with Sensitive Optics or MEMS
 - Can Cause Shorts in Areas Remote From Whisker Origins
“Reported”
Tin Whisker-Induced Field Problems

Tin Whiskers are NOT Just of Interest to Lab Researchers

Space Application

Medical Application
Heart Pacemaker RECALL

Defense Application

March 26, 2002

Tin Whiskers: Attributes and Mitigation

10
One Model for Whisker Growth Mechanism

1. Substrate Elements (Cu, Zn, etc.) Diffuse Into Sn and Form Intermetallic Compounds (IMCs) Along Sn Grain Boundaries
2. As a Result, Stress Builds in Sn Layer
3. To Relieve Stress, Whiskers EXTRUDE Thru Ruptures in Sn Oxide
Factors That May Contribute Compressive Stress to Tin Layer

- **Plating Chemistry/Process**
 - Electroplating Current Density
 - Higher Current Density --> Higher Residual Stress
 - Tin Grain Size and Shape
 - Submicron Grains
 - "Matte" vs. "Bright" Finish
 - Use of "Brighteners" and Presence of Impurities (Codeposited Carbon/Hydrogen)
 - Plating Thickness
 - >0.5 \(\mu \text{m} \) and <8 \(\mu \text{m} \) more prone
 - Alloy composition
 - Pure Sn, Sn-Cu, Sn-Bi, and rarely Sn-Pb
- **Substrate (Including Base Metal and Barrier Plating Layers)**
 - Material (Copper, Brass, Nickel, others)
 - Substrate Preparation (Stamped, Formed, Annealed)
Factors That May Contribute Compressive Stress to Tin Layer

- Intermetallic Compound (IMC) Formation
 - Substrate Element Diffusion into Tin Layer
 - Metallurgical Interactions

- Environmental Stresses
 - Temperature (50°C More Favorable)
 - Temperature Shock/cycling (CTE Mismatches)
 - Humidity (High RH Observed to Increase Whiskering)
 - Applied Pressure (Torque on Fasteners)

HOWEVER....

Many Experiments Show Contradictory Results For These Factors
Tin Whiskers and Multilayer Ceramic Capacitors (MLCCs)
Past Research

- Only a Few Dedicated Studies of Whisker Propensity of MLCCs
- Studies Assert MLCCs are NOT Prone to Whisker Because of:
 - “Large” (>5 µm), Well-Polygonized Sn Grain Structure
 - “Matte” Tin Plating
 - Nickel Barrier Layer (> 2 µm) Minimizes Diffusion
 - May produce “tensile” stress at Tin layer further reducing whisker propensity
 - Post-Plating Annealing Promotes Grain Growth & Reduces Residual Stress
- 1997 Study: 18 Years WHISKER-FREE Observations for MLCCs Stored at 50°C

HOWEVER....
RECENT Discoveries of MLCCs with Tin Whiskers
What Went Wrong???

- Q: “Didn’t We Order **Pd-Ag Terminated** MLCCs?”
- A: “YES! But the Supplier Shipped Us **PURE TIN** by Mistake!”

- Q: “Can We Still Epoxy Mount Them Inside Our Hybrid?
- A: “**Well????**”
Tin Whiskers and MLCCs

CASE 1: Hybrid Microcircuit Application

- User Application
 - Ordered Pd-Ag but RECEIVED Pure TIN
 - Conductive Epoxy Mount
 - Hermetic Hybrid Package (Nitrogen Backfill)

- MLCC Construction (0805 Commercial)
 - Barium Titanate Ceramic Body
 - Silver Frit Base Termination (17 μm)
 - Nickel Barrier Layer (6.5 μm)
 - Matte Tin Plated Final Finish (6.5 μm)
 - Average Grain Size > 5 μm

Manufacturer “A”
Tin Whiskers and MLCCs

CASE 1: User Test Environment

PROFUSE WHISKERS

Condition 1: Thermal Cycle: -40°C / +90°C (> 200 Cycles)

Max. Length ~ 250 µm

Condition 2: High Temp Storage: +90°C for 400 hrs

NO WHISKERS
Tin Whiskers and MLCCs

CASE 2: Recent Experiments @ The Aerospace Corp.

PROFUSE WHISKERS

- Pure Tin Commercial MLCCs \textit{(with NICKEL Barrier)}
 - Heat Treated @ 215°C for 5 seconds to “Simulate” Reflow Installation
 - Thermal Cycle Unmounted: -40°C / +90°C for 500+ cycles

Max. Length ~ 30 µm

Manufacturer “B”
Tin Whiskers and MLCCs

CASE 3: More Experiments @ The Aerospace Corp.

PROFUSE WHISKERS

- Pure Tin Military MLCCs (with NICKEL Barrier)
 - Thermal Cycle Unmounted: -40°C / +90°C for 100 cycles

Max. Length ~ 30 µm

NOTE: MIL Specs 55681 and 123 Allow Pure Tin “OPTION” (Termination Type “W”)

Manufacturer “C”
Tin Whiskers and MLCCs
CASES 4 & 5: More MLCC Whisker “Anecdotes”

• Case 4: Incorrect MLCC Shipped
 – Manufacturer “D”
 – User orders Pd-Ag MLCCs, but gets \textbf{PURE TIN} by Mistake
 – User Observes \textit{“Moss-Like” Growths on MLCCs} in Stock Storage

• Case 5: AFTER \textbf{Vapor Phase Installation}
 – Manufacturer “B”
 – Pure Tin Commercial 2220 and 1812 MLCCs
 – Vapor Phase Installation with Solder (63 / 37) \(@ 217^\circ C \)
 – Thermal Cycle/Shock (-55°C / +100°C) for 50 to 400 Cycles
 – RESULTS: \textbf{Whiskers up to 30 \(\mu m \)}}
Tin Whiskers and SMT Fuses
Evaluation PRIOR to Converting to Pb-Free

- SMT Fuse Construction Similar to MLCC
 - Prototype Pb-free Termination: “Matte” Tin Finish Over Nickel

- Whisker Evaluation Finds:
 - WHISKERS after Temp Cycle
 - No Whiskers after Temp/Humidity
 - No Whiskers after High Temp Storage

- Sn/Pb Control Samples Did NOT Whisker
Whisker Mitigation

AVOID WHISKER PRONE PRODUCTS/PROCESSES

- User Strategy Should Involve Application of **AS MANY MITIGATING PRACTICES AS POSSIBLE**
 - LOWER COMPRESSIVE STRESS in the Tin Plating Itself
 - Annealed or Hot Dipped Surfaces (Preferably with Sn/Pb Solder)
 - Careful Handling to Minimize Scratches, Marks, Indentations
 - Physical Barriers
 - Conformal Coat
 - Insulating Barriers, Cardboard
 - Increase Spacing of Surfaces of Opposite Polarity to > 0.5 inches

Avoid Pure Tin if Possible
Whisker Mitigation
Conformal Coat (Polyurethane)

- WILL NOT PREVENT WHISKER from Growing Through
- REDUCES Incubation Period: Whiskers appear SOONER!!
- HOWEVER, REDUCES Growth Rate
- Likely Prevents Whisker from Growing Back into Coated Surface

Whiskers Growing
BENEATH 2 mil Thick Coating

Whisker Growing Thru
~0.25 mil Thick Coating
Conclusions

• Electrical Shorting Due to Tin Whiskers Remains a Significant Problem
 – Problems **WILL INCREASE** with Increased Use of Pb-Free Coatings
 – Failures **ARE STILL OCCURRING**

• Accelerated Test to Determine Susceptibility to Whisker Formation Needs to be Developed
 – Must Include Acceleration Factors for BOTH Incubation and Growth

• Users Should Carefully Assess Application of Passives Containing Pure Tin Coating for Susceptibility to Tin Whisker Formation
 – Susceptibility Could be Lot-Related
Contact Information

Jay Brusse
QSS Group, Inc. (NASA Goddard)
301-286-2019
Jay.A.Brusse.1@gsfc.nasa.gov

Gary Ewell
The Aerospace Corporation
310-336-6003
Gary.J.Ewell@aero.org

Jocelyn Siplon
The Aerospace Corporation
310-336-6572
Jocelyn.P.Siplon@aero.org

NASA Goddard Tin Whisker WWW Site
http://nepp.nasa.gov/whisker

March 26, 2002 Tin Whiskers: Attributes and Mitigation 26