NASA Space Technology Mission Directorate Small Spacecraft Technology

Andrew Petro Program Executive – NASA Headquarters

September 10, 2014

Small Spacecraft Technology Program

Small, Affordable, Rapid, & Transformative

Objectives:

- To develop and demonstrate new small spacecraft technologies and capabilities for NASA's missions in science, exploration and space operations
- To promote the small spacecraft approach as a paradigm shift for NASA and the larger space community.

Flight Demonstration Projects in:

Radio and Laser Communications Formation Flight and Docking Low cost satellite buses Smallsat swarms for space science missions

Implemented through:

Directed NASA projects Contracts with private industry University-NASA partnerships Collaboration with SBIR and other programs

Small Spacecraft Technology Program

Nationwide Participants and Partners

www.nasa.gov/smallsats

Small Spacecraft Technology Program Projects: 2013-2015

NASA

EDSN

Edison Demonstration of Smallsat Networks

Ames Engineering Directorate, with support from MSFC

Partners:

Montana State University – Payload Santa Clara University – Ground Station

Objective: The EDSN Mission will launch a swarm of 8 low-cost small satellites and demonstrate the operation of an intra-swarm communication link and multi-point sensing measurement.

Satellite bus based on Phonesat heritage.

EDSN Spacecraft

8 Flight Units, 2 Spares, 4 Engineering Development Units

Nodes

Companion mission to EDSN, using the same satellite design with additional new software capabilities

Led by: NASA Ames Research Center Partners: Montana State University Santa Clara University

Objective:

- Each 1.5U cubesat can collect and relay data to the other
- Downlink role is negotiated between the satellites
- Two-way communication for commands and updates from the ground
- Deployed into orbit from ISS

OCSD Optical Communication and Sensor Demonstration

The Aerospace Corporation

Objective: Demonstrate ranging, optical downlink, cold gas propulsion, and cross-track motion sensing technologies on a cubesat proximity operations mission with two 1.5 U cubesats.

ISARA

Integrated Solar Array and Reflectarray Antenna

Jet Propulsion Laboratory

Partners: Aerospace Corporation - Cubesat bus and operations Pumpkin, Inc. - Solar Panel

Objective: ISARA will demonstrate a high gain antenna (HGA) integrated into a commercially available solar array that enables 100 Mbps Ka-band cubesat communications capability at very low cost and minimal payload mass and volume impact.

CPOD

Tyvak Nano-Satellite Systems LLC

Partners: 406 Aerospace Applied Defense Solutions Analytical Graphics Inc. California Polytechnic State University Government Partner: AFRL

Objective: Demonstrate close proximity operations and docking of two 3U cubesat spacecraft in LEO.

Smallsat Technology Partnerships

Cooperative agreements with US colleges and universities to develop and/or demonstrate new technologies and capabilities for small spacecraft in collaboration with NASA.

One to two year projects Up to \$100,000 per year, per university (up to \$150,000 if more than one university) Up to 1.0 FTE in NASA labor per year, per project

13 Projects selected on August 8, 201317 universities7 NASA Center partners

Plan solicitations in two-year cycles **Next solicitation expected in early 2015** for 2016-17 projects

Smallsat Technology Partnerships 2013 Awards

COMMUNICATIONS

High Rate Cubesat X-band/S-band Communication System University Of Colorado - Goddard Space Flight Center, Marshall Space Flight Center

Space Optical Communications Using Laser Beam Amplification University Of Rochester - Ames Research Center

Development of Novel Integrated Antennas for Cubesats University Of Houston - Johnson Space Center

GUIDANCE, NAVIGATION & CONTROL

Smallsat Precision Navigation With Low-Cost MEMS IMU Swarms West Virginia University & Marquette University - Johnson Space Center

Cubesat Autonomous Rendezvous & Docking Software University Of Texas - Johnson Space Center

Radiation Tolerant, FPGA-based Smallsat Computer System Montana State University - Goddard Space Flight Center, Marshall Space Flight Center

An Integrated Precision Attitude Determination and Control System University Of Florida - Langley Research Center

PROPULSION

Propulsion System and Orbit Maneuver Integration in Cubesats Western Michigan University - Jet Propulsion Lab

Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control **Purdue University - Goddard Space Flight Center**

POWER

Smallsat Low Mass, Extreme Low Temperature Energy Storage California State University - Northridge - Jet Propulsion Lab

SCIENCE INSTRUMENT CAPABILITIES

Compressive Sensing for Advanced Imaging and Navigation Texas A&M University - Langley Research Center

Mini Fourier-Transform Spectrometer for Cubesat-Based Remote Sensing Appalachian State University & University of Maryland - Baltimore County - Goddard Space Flight Center

ADVANCED MANUFACTURING

Printing the Complete Cubesat University Of New Mexico, University of Texas - El Paso, & Drake State Technical College - Glenn Research Center

Technology Development Projects 2013 NRA Awards

SMALL SPACECRAFT PROPULSION

MPS-120 Cubesat High-impulse Adaptable Modular Propulsion System PI: Christian Carpenter, Aerojet General Corporation, Redmond, WA

Advanced Hybrid Rocket Motor for Cubesats PI: John DeSain, The Aerospace Corporation, El Segundo, CA Partner: Pennsylvania State University, University Park, PA

1U Cubesat Green Propulsion System with Post-Launch Pressurization PI: Michael Tsay, Busek Company. Inc., Natick, MA Partner: NASA Goddard Space Flight Center

Iodine RF Ion Thruster Development PI: Kurt Hohman, Busek Company. Inc., Natick, MA

Inductively Coupled Electromagnetic Thruster System Development for Small Spacecraft Propulsion PI: John Slough, MSNW LLC, Redmond, WA

Technology Development Projects 2013 NRA Awards

SMALL EARTH RETURN VEHICLES

Technology Development for the Maraia Earth Return Capsule

PI: Alan Strahan, NASA Johnson Space Center Partners: NASA KSC, Up Aerospace

Up Aerospace Launch Facility at Spaceport America, New Mexico

Comm Antenna

Servo

SBIR – Deep Space Cubesat Technology 2014 Phase 1 Projects

COMMUNICATIONS AND NAVIGATION

1U Cubesat Lasercom Terminal for Deep Space Communication Fibertek, Inc. - Herndon, VA

Inches of a

Deep Space Cubesat Regenerative Ranging Transponder Innoflight, Inc. - San Diego, CA

Deep Space Cubesat Gamma-ray Navigation Technology Demonstration ASTER Labs, Inc. - Shoreview, MN

SBIR – Deep Space Cubesat Technology 2014 Phase 1 Projects

POWER GENERATION

High Power Betavoltaic Technology MicroLink Devices, Inc. - Niles, IL

Deployable Solar Energy Generators for Deep Space Cubesats Nanohmics, Inc. - Austin, TX

PROPULSION

Multi-Purpose Interplanetary Deployable Aerocapture System Altius Space Machines, Inc. - Louisville, CO

Cubesat Ambipolar Thruster for LEO and Deep Space Missions Aether Industries, LLC - Ann Arbor, MI

SBIR – Deep Space Cubesat Technology 2014 Phase 1 Projects

DEEP SPACE BUS

Solar Electric Propulsion Cubesat Bus for Deep Space Missions ExoTerra Resource LLC - Lone Tree, CO

LunarCube for Deep Space Missions Busek Company Inc. - Natick, MA

Small Spacecraft Technology

Small Spacecraft Technology - State of the Art Report

- Compiled for the SST Program by Ames Engineering with inputs from the larger community
- Completed in October 2013
- Annual update intended, broad participation desired
- Link to report on STMD/SSTP website: www.nasa.gov/smallsats

Possible Future Directions

- Nanosat Science & Communications Constellations
- Inspector/Explorer Nanobots
- Small Solar Electric Propulsion Buses
- Small Entry Vehicles and Testbeds
- Low-Cost Deorbit
- Nano-launcher Capability

www.nasa.gov/smallsats