The View from 10,000 ft – what is happening and what it means for flight electronics

Kenneth A. LaBel
ken.label@nasa.gov
301-286-9936
Co-Manager NEPP Program

http://nepp.nasa.gov
Outline

• What’s New with Electronics
• What’s Unique About Space and Electronics
• How is NEPP Approaching the Problem

Atomic Interactions
 – Direct Ionization

Interaction with Nucleus
 – Indirect Ionization
 – Nucleus is Displaced

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
The Amazing Progression of the Integrated Circuit (IC)

- We have been eyewitnesses to the revolution that’s taken place in the semiconductor industry
 - What was once inconceivable is now the ordinary

- Several factors have been at the forefront of this movement
 - Integration
 - Increasing functionality in decreased space
 - Material science
 - Using science to modify the silicon transistor and it’s package

Note: this talk has a bit more radiation focus than reliability due to my background

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
The Growth in IC Availability

• The semiconductor industry has seen an explosion in the types and complexity of devices that are available over the last several decades
 – The commercial market drives features
 • High density (memories)
 • High performance (processors)
 • Upgrade capability and time-to-market (FPGAs)
 • Wireless (RF and mixed signal)
 • Long battery life (Low-power CMOS)

Zilog Z80 Processor
circa 1978
8-bit processor

Intel 65nm Dual Core Pentium D Processor
circa 2007
Dual 64-bit processors

Integrated Cycling Bib
and MP3
Types of Electronic Parts for Space

• One may view electronic parts for space as meeting needs in three categories
 – Standard electronics
 • E.g., capacitors
 – Basic components
 – Standard building blocks
 • E.g., Field Programmable Gate Arrays (FPGAs)
 – Widespread usage in most systems
 – Custom devices not available as “off-the-shelf”
 • E.g., nuclear power or EVA
 – Needed for a specific application - ASIC

• Note: Commercial-of-the-shelf (COTS) assemblies (e.g., commercial electronic cards or instruments) also may be considered
 – Screening is more complicated than ever before!
A Critical Juncture for Space Usage – Commercial Changes in the Electronics World

- **Scaling of technology**
 - Increased gate/cell density per unit area (as well as power and thermal densities)
 - Changes in power supply and logic voltages (<1V)
 - **Reduced electrical margins within a single IC**
 - Increased device complexity, # of gates, and hidden features
 - Speeds to >> GHz (CMOS, SiGe, InP…)
- **Changes in materials**
 - Use of antifuse structures, phase-change materials, alternative K dielectrics, Cu interconnects (previous – Al), insulating substrates, ultra-thin oxides, etc…
- **Increased input/output (I/O) in packaging**
 - Use of flip-chip, area array packages, etc
- **Increased importance of application specific usage to reliability/radiation performance**

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
The Changes in Device Technology

• Besides increased availability, many changes have taken place in
 – Base technology,
 – Device features, and,
 – Packaging
• The table below highlights a few selected changes

<table>
<thead>
<tr>
<th>Feature</th>
<th>circa 1990</th>
<th>circa 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base technology</td>
<td>bulk CMOS/NMOS</td>
<td>CMOS with strained Si or SOI</td>
</tr>
<tr>
<td>Feature size</td>
<td>> 2.0 um</td>
<td>65 nm</td>
</tr>
<tr>
<td>Memory size - volatile (device)</td>
<td>256 kb</td>
<td>1 Gb</td>
</tr>
<tr>
<td>Processor speed</td>
<td>64 MHz</td>
<td>> 3 GHz</td>
</tr>
<tr>
<td>FPGA Gates</td>
<td>2k</td>
<td>> 1M</td>
</tr>
<tr>
<td>Package</td>
<td>DIP or LCC - 40 pins</td>
<td>FCBGA - 1500 balls</td>
</tr>
<tr>
<td>Advanced system on a chip (SOC)</td>
<td>Cache memory</td>
<td>>Gbps Serial Link, Serdes,</td>
</tr>
<tr>
<td>features</td>
<td></td>
<td>embedded processors,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>embedded memory</td>
</tr>
</tbody>
</table>
Are you prepared for what lurks below 130nm?
What is a Scaled CMOS anyway?

- It’s all about transistors and sizing (known as gate or channel lengths) and the desire to pack as many transistors on a chip as possible
 - Transistor node space is now commercially at 32nm (and 25nm is sampling!)
Package Complexity - Evolution

Dual in-line Package (DIP)
10’s of pins
Wirebonded, through hole

Quad Flatpack (QFP)
100’s of pins
Wirebonded, surface mount

Area Array Package
1000’s of pins
Bump bonded,
surface mount or columns added
The Challenge for Selecting ICs for Space

- Considerations since the “old days”
 - High reliability (and radiation tolerant) devices
 - Now a very small market percentage
 - Commercial “upscreening”
 - Increasing in importance
 - Measures reliability, does not enhance
 - System level performance and risk
 - Hardened “systems” not devices

ADCs? SDRAM? Processor? DSPs Flash?
SerDes? ASICs? FPGAs?

System Designer

Trying to meet high-resolution instrument requirements AND long-life in a space environment

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Microelectronics: Categories

- Microelectronics can be viewed several ways
 - Digital, analog, mixed signal, other
 - Complementary Metal Oxide Semiconductor (CMOS), Bipolar, etc...
 - Function (microprocessor, memory, …)
- There are only two commercial foundries (where they build devices) in the US dedicated to building radiation hardened digital devices. Several others have “foundryless” options.
 - Efforts within DoD to provide alternate means of developing hardened devices
 - Hardened-by-design (HBD)
 - Provides path for custom devices, but not necessarily off-the-shelf devices
 - Commercial devices can have great variance in radiation tolerance from device-to-device and even on multiple samples of same device
 - No guarantees!
 - Analog foundry situation is even worse
- New technologies have many unknowns
 - Ultra-high speed, nanotechnologies, microelectromechanical systems (MEMS and the optical versions – MOEMS), …

A MOEMS in action
NEPP:

If we used strictly commercial parts

<table>
<thead>
<tr>
<th></th>
<th>Terrestrial</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime</td>
<td>1-3 years, then replaced or thrown out</td>
<td>1-20 years and rarely replaceable</td>
</tr>
<tr>
<td>Thermal</td>
<td>0-70C</td>
<td>-55 to +125C with extremes much higher and lower</td>
</tr>
<tr>
<td>Shock</td>
<td>Oops! I dropped it. Time to get an upgrade anyway…</td>
<td>Launch vibration</td>
</tr>
<tr>
<td>Anomaly</td>
<td>Reboot or power cycle or return to dealer</td>
<td>Anomaly or failure</td>
</tr>
<tr>
<td>Radiation</td>
<td>Is the microwave on?</td>
<td>Protons, electrons, cosmic rays, …</td>
</tr>
</tbody>
</table>

- NEPP is the only entity at NASA that
 - Trains young engineers in the difference and provides a growth path for developing project parts and radiation engineers
 - Develops and validates qualification methods
 - Provides knowledge that allows insertion of modern devices into our space systems
 - Shares and gathers knowledge with all the industry

If the flight projects don’t know there’s a problem…

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Space Environments and Related Effects

Plasma
- **Charging**
 - Biasing of instrument readings
 - Pulsing
 - Power drains
 - Physical damage
- **Particle radiation**
- **Neutral gas particles**
 - **Drag**
 - Torques
 - Orbital decay
- **Ultraviolet & X-ray**
 - **Surface Erosion**
 - Degradation of thermal, electrical, optical properties
 - Degradation of structural integrity
- **Micro-meteoroids & orbital debris**
 - **Impacts**
 - Structural damage
 - Decompression

- **Ionizing & Non-Ionizing Dose**
 - Degradation of micro-electronics
 - Degradation of optical components
 - Degradation of solar cells
 - Data corruption
 - Noise on Images
 - System shutdowns
 - Circuit damage
 - Single Event Effects
 - Degradation of micro-electronics
 - Degradation of optical components
 - Degradation of solar cells
 - Data corruption
 - Noise on Images
 - System shutdowns
 - Circuit damage

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Space Radiation Environment

Deep-space missions may also see: neutrons from background or radioisotope thermal generators (RTGs) or other nuclear source. Atmosphere and terrestrial may see GCR and secondaries.
Implications for Electronics in Space

- With all these changes in the semiconductor world, what are the implications for usage in space? Implications for test, usage, qualification and more
 - Speed, power, thermal, packaging, geometry, materials, and fault/failure isolation are just a few for emerging challenges for radiation test and modeling.
 - Reliability challenges are equally as great
 - The following chart (courtesy of Vanderbilt University) looks at some of the recent examples of test data that imply shortfalls in existing radiation performance models.
 - Technology assumptions in standard tools such as CREME96 are no longer valid

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Sample Radiation Modeling Shortfalls

High-Speed Optical Link

SiGe Hetrojunction Bipolar Transistor

Silicon On Insulator

Bulk RHBD CMOS

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Where we are –
Radiation test methods and what has changed in the world

- Existing test methods
 - SEE
 - JEDEC JSD 57
 - ASTM, F1192-00
 - TID
 - MIL-STD-883B, Test Method 1019.8
 - ASTM, F1892-06
- All had prime development in the mid-90s with some updates since, however, many new issues have been discovered that may not be covered adequately

- Examples: RecentSEE Phenomena
 - Angular effects in SOI technologies
 - Role of single event transients (SETs) and commensurate speed-related issues in both analog and digital circuits
 - Ion penetration and range issues in power and packaged components
 - Approaches to die access
 - Impact of application and reconfigurable approaches to SEE performance
 - Role of nuclear reactions from heavy ion particle interactions

Reliability testing has had commensurate complications

Courtesy ISDE, Vanderbilt University
The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts Procurement (500-1000 devices for testing only)</td>
<td>$25-1000K</td>
<td>Individual device costs can run from cents to tens of thousands</td>
</tr>
<tr>
<td>“Standard” Qualification Tests</td>
<td>$300K</td>
<td></td>
</tr>
<tr>
<td>Radiation Tests and Modeling</td>
<td>$400K</td>
<td>Assumes total dose and single event (heavy ion) only</td>
</tr>
<tr>
<td>Failure Modes Analysis</td>
<td>$300K</td>
<td>Out-of-the-box look at the “hows and whats” for non-standard research required for qualification</td>
</tr>
<tr>
<td>Additional Tests, Modeling, and Analysis based on Failure Modes</td>
<td>$500K</td>
<td></td>
</tr>
<tr>
<td>Total cost for one device type</td>
<td>$1.5-3M</td>
<td>Not all new technologies will meet standard qualification levels: technology limitations document</td>
</tr>
</tbody>
</table>

Assumption: 12-24 months to develop sufficient data for technology confidence
Device Complexity Drives Cost and Schedule!

- **Ex., Standard Memory**

1996 SEE Test of a 4M SRAM

<table>
<thead>
<tr>
<th>Description</th>
<th>Man-weeks or units</th>
<th>Cost in $</th>
<th>Total</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Ion at BNL SEUTF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test plan</td>
<td>0.20</td>
<td>$4,000.00</td>
<td>$800.00</td>
<td>Includes eng, rad, other to define what needs to go into test set with project.</td>
</tr>
<tr>
<td>Device procurements</td>
<td>10.00</td>
<td>$50.00</td>
<td>$500.00</td>
<td></td>
</tr>
<tr>
<td>Misc parts</td>
<td>1.00</td>
<td>$250.00</td>
<td>$250.00</td>
<td>Sockets, connectors, etc...</td>
</tr>
<tr>
<td>Device delidding</td>
<td>0.05</td>
<td>$3,500.00</td>
<td>$175.00</td>
<td></td>
</tr>
<tr>
<td>Test board design - electrical and layout</td>
<td>0.40</td>
<td>$4,000.00</td>
<td>$1,600.00</td>
<td></td>
</tr>
<tr>
<td>Board fab and population</td>
<td>1.00</td>
<td>$3,500.00</td>
<td>$3,500.00</td>
<td>In-house board build</td>
</tr>
<tr>
<td>Board/tester debug</td>
<td>0.50</td>
<td>$4,000.00</td>
<td>$2,000.00</td>
<td></td>
</tr>
<tr>
<td>Heavy ion test performance - contractor</td>
<td>2.00</td>
<td>$1,500.00</td>
<td>$3,000.00</td>
<td></td>
</tr>
<tr>
<td>BNL Beam</td>
<td>6.00</td>
<td>$700.00</td>
<td>$4,200.00</td>
<td>Simple data: bit flips, latchup</td>
</tr>
<tr>
<td>Data analysis</td>
<td>1.00</td>
<td>$3,500.00</td>
<td>$3,500.00</td>
<td></td>
</tr>
<tr>
<td>Test report (eng, rad expert, rad lead)</td>
<td>0.50</td>
<td>$4,000.00</td>
<td>$2,000.00</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>$23,525.00</td>
<td></td>
</tr>
</tbody>
</table>

2006 SEE Test of SDRAM

<table>
<thead>
<tr>
<th>Description</th>
<th>Man-weeks or units</th>
<th>Cost in $</th>
<th>Total</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Ion at TAMU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test plan</td>
<td>1.00</td>
<td>$4,000.00</td>
<td>$4,000.00</td>
<td>Includes eng, rad, other to define what needs to go into test set with project.</td>
</tr>
<tr>
<td>Device procurements</td>
<td>10.00</td>
<td>$75.00</td>
<td>$750.00</td>
<td>Higher speed drives cost</td>
</tr>
<tr>
<td>Misc parts</td>
<td>1.00</td>
<td>$1,000.00</td>
<td>$1,000.00</td>
<td>Assumes FBGA package; If this does not work, more expensive test facility like NSCL needed: >$100K delta</td>
</tr>
<tr>
<td>Device thinning and package processing</td>
<td>10.00</td>
<td>$350.00</td>
<td>$3,500.00</td>
<td>NSCL needed: >$100K delta</td>
</tr>
<tr>
<td>Daughterboard Board design - electrical</td>
<td>0.40</td>
<td>$4,000.00</td>
<td>$1,600.00</td>
<td></td>
</tr>
<tr>
<td>Daughterboard Board design - PCB</td>
<td>0.50</td>
<td>$3,500.00</td>
<td>$1,750.00</td>
<td></td>
</tr>
<tr>
<td>Test Boards</td>
<td>10.00</td>
<td>$500.00</td>
<td>$5,000.00</td>
<td></td>
</tr>
<tr>
<td>Board population</td>
<td>0.40</td>
<td>$3,500.00</td>
<td>$1,400.00</td>
<td></td>
</tr>
<tr>
<td>Board/tester debug</td>
<td>0.50</td>
<td>$4,000.00</td>
<td>$2,000.00</td>
<td></td>
</tr>
<tr>
<td>Tester VHDL development</td>
<td>3.00</td>
<td>$4,000.00</td>
<td>$12,000.00</td>
<td></td>
</tr>
<tr>
<td>Technician</td>
<td>1.00</td>
<td>$3,500.00</td>
<td>$3,500.00</td>
<td></td>
</tr>
<tr>
<td>Rad expert (test oversight and plan)</td>
<td>0.60</td>
<td>$5,000.00</td>
<td>$3,000.00</td>
<td></td>
</tr>
<tr>
<td>Heavy ion test performance - contractor</td>
<td>2.00</td>
<td>$2,000.00</td>
<td>$4,000.00</td>
<td>2X time required: more data, more error types, more complex results</td>
</tr>
<tr>
<td>TAMU</td>
<td>16.00</td>
<td>$750.00</td>
<td>$12,000.00</td>
<td></td>
</tr>
<tr>
<td>Data analysis</td>
<td>3.00</td>
<td>$3,500.00</td>
<td>$10,500.00</td>
<td></td>
</tr>
<tr>
<td>Test report (eng, rad expert, rad lead)</td>
<td>1.00</td>
<td>$4,000.00</td>
<td>$4,000.00</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>$70,000.00</td>
<td></td>
</tr>
</tbody>
</table>

1996 vs 2006 a 3X Cost Delta

Other test costs (radiation and reliability) have increased commensurately with ~3X schedule increase as well!

Now >> $100K

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
NEPP Mission

• To provide guidance to NASA:
 – Selection and application of microelectronics technologies
 – Improved understanding of risks related to the use of these technologies in the space environment
 – Appropriate evaluations to meet NASA mission assurance needs for electronic systems

• NEPP evaluates new* and emerging** electronic parts technologies and provides assurance support for technologies in current use in NASA spaceflight systems

*New – Recently marketed, commercially available
** Emerging – Available in limited quantities for evaluation, on path to commercial products
NEPP Overview

- NEPP supports all of NASA for >20 years
 - 7 NASA Centers and JPL actively participate
- The NEPP Program focuses on the reliability aspects of electronic devices
 - Three prime technical areas: Parts (die), Packaging, and Radiation
- Alternately, reliability may be viewed as:
 - Lifetime, inherent failure and design issues related to the electronic parts technology and packaging,
 - Effects of space radiation and the space environment on these technologies, and
 - Creation and maintenance of the assurance support infrastructure required for mission success.

Electrical overstress failure in a commercial electronic device

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
NEPP Works Two Sides of the Equation

• Assurance
 – *Issues that are applicable to space systems being designed and built (i.e., currently available technologies)*
 – Examples
 • Cracked capacitors
 • DC-DC converter reliability
 • Enhanced Low Dose Rate Sensitivity (ELDRS)
 – Communication infrastructure via website and working groups
 • NASA Electronic Parts Assurance Group (NEPAG)
 – Audit and review support

• New electronics technology
 – *Issues that are applicable to the next generation of space systems in conceptualization or preliminary design*
 – Examples
 • 45-90 nm CMOS
 • SiGe
 • State-of-the-art FPGAs
 – Collaboration with manufacturers and government programs for test, evaluation, and modeling
 – Development of new predictive performance tools

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Typical Spacecraft Electrical Architecture

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Typical Spacecraft Electrical Architecture

The 90/90 Goal

![Diagram of typical spacecraft electrical architecture]

- **Command and Data Bus (direct link)**
- **Power Bus (ses)**
- **C&DH**
- **GN&C**
- **Propulsion**
- **Thermal**
- **Instruments/Payload**
- **COMM**
- **RF to/from Ground or other spacecraft**
- **Ground Antenna**

Sample NEPP Technology Areas
- Memories
- FPGAs
- Capacitors
- SiGe
- Power devices

90% of NEPP efforts should support
90% of NASA flight missions

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Typical Spacecraft Electrical Architecture

The 90/90 Goal - Example

Sample NEPP Technology Areas

Memories

Used in any processing application and for data storage on a spacecraft.

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
NEPP Has a Wide Range of Efforts

- Tasks vary extensively in the technologies of interest
 - Building blocks like capacitors
 - Standard products like DC-DC Converters, linear bipolar devices, and A-to-D Converters
 - New commercial devices such as FPGAs and memories
 - Test structures on emerging commercial or radiation hardened technologies
 - Specialized electronics such as IR arrays and fiber optics
 - New assurance methods and investigations

- NEPP ETW provides forum to present recent results, as well as current and future plans

- Currently in FY11 planning cycle
 - PRELIMINARY PLANS FOLLOW
NASA Electronic Parts Assurance Group (NEPAG)

Core Areas are Bubbles; Boxes underneath are elements in each core

NEPAG Focus Areas

Legend
- DoD and NASA Funded
- NASA-only funded
- Overguide

Failure Investigations
- Investigate
 - Assess NASA Impact
 - Test/Analyze
 - Corrective Action
 - Lessons Learned

Specs and Standards
- US MIL
 - VCS

Audits
- US MIL

Collaborations
- National
 - International

Parts Support
- NPSL
 - Technical Expertise Resource
 - Bulletins
 - Connectors

Consortia
- CAVE
 - CALCE

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
FY11 Radiation Plans for NEPP Core (1)

Core Areas are Bubbles, Boxes underneath are variable tasks in each core

NEPP Research Categories – Active Electronics

- SiGe. Mixed Signal
 - SiGe on SOI
 - Scaled SiGe
 - Advanced Data Conversion, Amplifiers, Drivers
 - Architectural comparison

- Scaled CMOS
 - Commercial Devices
 - Memories – Non-volatile, volatile
 - FPGAs
 - Processors, SOCs
 - Structured ASICs
 - Test Structures
 - Silicon on Insulator (SOI)
 - Ultra-low power
 - 32 and 45 nm
 - CNTs
 - RHBD Support

- Sensor Technologies
 - IR
 - Visible
 - Cryo SEL
 - Others

- Photonics
 - Fiber Amplifiers
 - Exotic-doped Fiber components
 - Wavelength Division Multiplexing
 - Free space Optical interconnects
 - Fiber Data Links
 - Optocouplers and PM Optocouplers

- Performance Tools
 - 32 and 45 nm CMOS
 - SiGe
 - Low proton energy
 - Compact model based rate prediction

Develops students at
Georgia Tech, Vanderbilt, Auburn

Partners include: AFRL, Cypress, Ball
DoD, IBM, TI, Intel, Boeing,
Actel, Atmel, Xilinx, Altera, Cypress

Partners at:
DoD, IBM, TI, Intel, Boeing,
Actel, Atmel, Xilinx, Altera, Cypress

Develops students at Vanderbilt

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
FY11 Radiation Plans for NEPP Core (2)

Core Areas are Bubbles; Boxes underneath are variable tasks in each core

NEPP Research Categories – Hardness Assurance

ELDRS Test
- NSC, LT, TI, Intersil, STM Support
- Hydrogen Effects
 - High dose

Temperature Effects
- SEE - Elevated
 - SEE - Cryo
- TID – Elevated post
- TID – Elevated during
- Cryo BOK

Power Devices
- SEGR Model/Tool
 - Vendor Eval
 - POLs
 - GaN, SiC
 - High V DC-DC

Combined Effects
- NVMs – Radiation and Reliability
 - TID on SEE
 - DDD on SEE
 - SETs on Reliability
 - <90nm Reliability of Irradiated Devices
 - Heavy Ion DD of<65nm

Guidelines
- ADC Test
 - Low Proton Energy
 - SOC Test Guideline
 - NVM Test Guideline
 - Standard FPGA Test Method
 - SDRAM Test Guideline

Other Overguide Tasks
- Education/training modules
- Microwave Technologies
- Additional SOC Testing
- Partners at
 - vendors listed, RLP Research, ASU
- Partners at
 - NSWC, IR, Fuji, STM, Microsemi

Legend
- DoD and NASA funded
- NASA-only funded
- Overguide

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
NEPP Research Categories – Parts Assurance

- **SiGe. Mixed Signal**
 - Cold temperature effects
 - Scaled SiGe
 - Advanced Data Conversion, Amplifiers, Drivers
 - GaAs, InP, Antemonides

- **Scaled CMOS**
 - Commercial Devices
 - Memories – Non-volatile
 - FPGAs
 - Processors, SOCs
 - Memories - SDRAM
 - Test Structures
 - Silicon on Insulator (SOI)
 - Ultra-low power
 - 32 and 45 nm
 - CNTs
 - Sub 90nm

- **Sensor Technologies**
 - IR
 - Visible
 - ROICs - Cryo
 - Others

- **Photonics**
 - Fiber Amplifiers
 - Exotic-doped Fiber components
 - Wavelength Division Multiplexing
 - Free space Optical interconnects
 - Fiber Data Links
 - Optocouplers and PM Optocouplers

- **Rf Electronics**
 - RF Reliability Guide
 - Advanced RF

Legend:
- NASA-only funded
- Overguide

Core Areas are **Bubbles**;
Boxes underneath are variable tasks in each core

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
FY11 Parts Plans for NEPP Core (2)

Core Areas are Bubbles; Boxes underneath are variable tasks in each core

NEPP Research Categories – Parts Assurance

Passives

Temperature Effects

Combined Effects

Power Devices

Guidelines

Polymer Caps

BME Caps

Embedded Passives

Advanced devices

Cryo CMOS

Mixed Signal - Cryo

Extended COTS

Hot spot test method

Cryo BOK

Power Mosfets

DC-DC Eval

POLs

GaN, SiC

High V DC-DC

NVMs – Radiation and Reliability

TID on SEE

DDD on SEE

SETs on Reliability

<90nm Reliability of Irradiated Devices

Heavy Ion DD of <65nm

Legend

NASA-only funded

Overguide

Other Overguide Tasks
Education/training modules
Microwave Technologies
Additional SOC Testing

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Core Element - Packaging

Core Areas are Bubbles; Boxes underneath are variable tasks in each core

NEPP Research Categories – Advanced Packaging

Legend
- NASA-only funded
- Overvguide

Area Arrays
- Ball Grid Arrays
- Column Grid Arrays
- Microcoil Spring Array
- Land Grid Arrays

Complex Non-Hermetic
- Area Array
- MIL Class Y Materials

Embedded Technologies
- Actives
- Passives

Lead-free
- Assemblies
- Tin Whiskers

Board Installation Damage
- Cracking
- Parametric Drift
- Reverse Polarity

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Samples of NEPP Impact to the Community (1 of 2)

NASA Flight Projects and some of the related areas that NEPP has provided a knowledge-base that has allowed anomaly/problem resolution

- MAP
 - Single Event Transients (SETs) – anomaly resolution led to NASA alert
- TERRA
 - Optocouplers, Solid State Recorders (SSR), High Gain Antenna anomaly
- AURA
 - Oscillators
- AQUA
 - Interpoint DC-DC converters
- TRMM, XTE
 - SSRs, FODBs
- TOPEX/Poseidon
 - Optocouplers
- SeaStar
 - SSRs
- Launch Vehicles
 - Optocouplers
- Suborbital
 - Parts screening
- Hubble Space Telescope
 - Optocouplers, Capacitors, SSRs, Fiber Optic Data Bus (FODB)
- Hubble Robotic Servicing
 - Processors
- JWST
 - Detector technologies
- Cassini
 - Interpoint DC-DC converters, optocouplers, processors
- AXAF/Chandra
 - Optics
- SWIFT
 - ACTEL FPGAs
- MER
 - ELDRS, Processors, Memories, Packaging
- ISS
 - Fiber optics, wire/cable
- Shuttle
 - ACTEL FPGAs, capacitors

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
Samples of NEPP Impact to the Community (2 of 2)

NEPP has supported DoD and other government anomaly/problem issues, technology developments, as well as joint knowledge-base development that have import to the NASA community

In addition, **NEPP has worked with industry to develop improved products for spaceflight**

<table>
<thead>
<tr>
<th>Government partners</th>
<th>Industry partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DoD</td>
<td>• Actel</td>
</tr>
<tr>
<td>• USD(AT&L)</td>
<td>• Lambda/International Rectifier</td>
</tr>
<tr>
<td>• Defense Threat Reduction Agency (DTRA)</td>
<td>• Interpoint</td>
</tr>
<tr>
<td>• Air Force Research Laboratory (AFRL)</td>
<td>• Vishay</td>
</tr>
<tr>
<td>• Air Force Space and Missile Command (AFSMC)</td>
<td>• Presidio</td>
</tr>
<tr>
<td>• Missile Defense Agency (MDA)</td>
<td>• BAE Systems</td>
</tr>
<tr>
<td>• Defense Advanced Research Projects Agency (DARPA)</td>
<td>• Honeywell</td>
</tr>
<tr>
<td>• NAVSEA</td>
<td>• Aeroflex</td>
</tr>
<tr>
<td>• NAVAIR</td>
<td>• Intersil</td>
</tr>
<tr>
<td>• Naval Research Laboratory</td>
<td>• Xilinx</td>
</tr>
<tr>
<td>• US Army Strategic and Missile Defense Command (USASMDC)</td>
<td>• IBM</td>
</tr>
<tr>
<td>• OGA</td>
<td>• Freescale (formerly Motorola)</td>
</tr>
<tr>
<td>• DOE</td>
<td>• Cardinal</td>
</tr>
<tr>
<td>• Sandia National Laboratories</td>
<td>• LSI Logic</td>
</tr>
<tr>
<td>• Lawrence Livermore National Laboratories</td>
<td>• Ball Aerospace</td>
</tr>
<tr>
<td>• Brookhaven National Laboratories</td>
<td>• Micro RDC, many others</td>
</tr>
<tr>
<td>• NSF</td>
<td></td>
</tr>
<tr>
<td>• National Superconducting Cyclotron Laboratory</td>
<td></td>
</tr>
<tr>
<td>• ESA</td>
<td></td>
</tr>
<tr>
<td>• JAXA</td>
<td></td>
</tr>
<tr>
<td>• CNES</td>
<td></td>
</tr>
<tr>
<td>• Qinetiq (UK)</td>
<td></td>
</tr>
</tbody>
</table>

The View from 10,000 Feet presented by Kenneth A. LaBel at NEPP ETW, NASA/GSFC – June 22, 2010
QUESTIONS?