Power Electronics for the Next Generation

Presented by Jack Shue NASA GSFC Code 563 June 22, 2010

Where We Have Been

So You Need Power?

• Who Gives a Watt?

– And what does that Watt Cost you?

Workhorse of a Spacecraft Power System

• NiCad Battery

- 22 Watt Hour / kg
 - TRMM Spacecraft 2 batteries with total weight of 278 Pounds (126 kg)
- Nickel Hydrogen
 - 30 to 40 Watt Hour / kg
 - HST 6 Batteries with a total weight of 930 Pounds (421 kg)
- Lithium Ion
 - 80 Watt Hour / kg
 - SDO 1 Battery with a total weight of 97 Pounds (44 kg)

Note: Mixing of Units

Battery Weight Does Not Include

- Solar Arrays
- Power Handling Electronics
- Harness
- Spacecraft Structure to Handle the Weight of the Batteries
- Cooling Equipment

Crude Voltage Estimates for Batteries Over One Orbit

- NiCad Battery
 - End of Day: 33V End of Eclipse: 26.4V $\Delta V = 6.6V$
- Nickel Hydrogen
 - End of Day: 33v End of Eclipse: 26.4V $\Delta V = 6.6V$
- Lithium Ion
 - End of Day: 32v End of Eclipse: 28.8V $\Delta V = 3.2V$

Allowed Voltage Variation on Electronic Logic

- Neon Logic
 - 95v to 500v allowed ripple: 15 volts 20 volts
- CD4000 Logic
 - 5v to 20v allowed ripple: 1 volt at 5 volt input.
- 74HC Logic
 - 2v to 7v Allowed ripple: 0.5 volt at 4 volt input.
- FPGA's
 - 3.14v to 3.45 and 1.43v to 1.57v Allowed ripple: 0.015 volt input.

Problems in Developing What We Have.

Top 5 Problems

- Lack of Requirements / Requirements Creep.
- Overloading and UNDERLOADING : Both are bad, underloading is less understood.
- Thermal
- Robustness (Distinct from Redundancy)
- Parts Design Changes and Thermal Instability Issues

Where We are Going

Getting Power to Your Parts

Getting Power to Your Parts Harness Drop and Voltage Variations.

Resistances Needed to Remain in Specification Due to Logic.

20 Watt Load

Power Delivery Internal to a Box

If you can not get there from here.....

Power Delivery Internal to a Box

If you can not get there from here.....

Point of Load Converters The JWST ICDH Approach

- James Webb Space Telescope's Instrument Command and Data Handling Box has 20 FPGA's.
- The Approach was to use Low Drop-out Linear regulators near each FPGA.

Point of Load Converters The JWST ICDH Approach

- Low Drop-out Linear Regulators had problems with Radiation.
- Changed for Homemade Linear Regulator, which took up too much space and was complex.
- Final Approach was to use "Standard" Linear regulators. (5.0 Volt to 1.5 Volt) With over all efficiency of 30%.

Note on Homemade Linear Regulator.

 Late in the development cycle on JWST it was learned at GSFC that there is a <u>Thermal</u> <u>Instability</u> with MOSFETs when Vgs is below ~ 7 volts (Linear Region).

 As manufactures work to make their MOSFETs faster and lower in On-Resistance, the problem is already causing failures and is becoming worse.

Thermal Instability

The MOSFET Technical Bulletin (10-01)

The MOSFET Technical Bulletin (10-01) has been reviewed by Export Control and deemed Non-ITAR. This document is now available on the NRB PBMA at http://secureworkgroups.grc.nasa.gov/nesc -review-board?go=396207.

http://ntrs.nasa.gov/search.jsp?R=699181& id=1&as=false&or=false&qs=Ntt%3Dmosfe t%26Ntk%3Dall%26Ntx%3Dmode%2Bmat chall%26Ns%3DHarvestDate%257c1%26 N%3D0

Point of Load The Next Step

• With the drive for MORE Current, Smaller Input Voltages, and Higher Efficiencies.

• The Next Step is a Switching Regulator

Point of Load Switching Converters

- Non-isolation Converters (Input & Output Grounds are Common)
- High Efficiency (80% to 97%)
- Small (1.5 inches square)

 Commercial Vendors are starting to be interested in manufacturing Point of Load Converters. <u>These</u> <u>are Hybrid Converters</u>

Plans to Qualify Point of Load's

- Obtaining Point of Load's from several vendors.
- Test converters to determine what they can / can not do.
- Bring Manufacturing up to Flight Standard's
- Testing will be done according to the NESC paper on DC – DC Converters. <u>http://standards.nasa.gov/</u>
- Keyword -or- Document Number search on "DC/DC Converter"

Plans to Qualify Point of Load's Key Tests

- Performance under low loads and high loads
 - Stability
 - Efficiency
- Performance with dynamic loading on input as well as output.
- EMI