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Introduction

• JPL/NEPP FPGA efforts are focused on:
– Technology qualification

– Risk management

– Packaging qualification and development

– Guideline development

– Agency wide support for community development



FPGAs at NASA

• FPGAs represent the main VLSI technology driving force for all NASA 
missions.

• All current generation and future generation spacecraft will have 
literally dozens of FPGAs on board doing a wide variety of tasks.
– MSL – 60+ FPGAs

• Bus control, telemetry, encoders, telecom, NVM, algorithms

• Concerns/opportunities:
– New materials qualification and reliability 

– Power management 

– High bandwidth communication related issues

– Single event/soft error mitigation schemes

– Programming vulnerabilities 



Worldwide Semiconductor Market  
2011

PLD = Programmable 
Logic Devices/FPGAs



Technology



Technology Node vs. Year of Introduction

• Space users are many generations behind in FPGA technology
• New technology issues for space community are ‘old’ for commerical

community



Space FPGA Technology
• Currently RTAX is latest generation in flight

– 150nm/7 layer AlCu:TiN/~3nm tox/antifuse

– Custom designs for life test/burn evaluation and antifuse qualification

Actel-RTAX-S Testing and Reliability Update, 2007



What’s next for Space FPGA Technology?

• Use of flash and 90nm and below technologies introduce 
significant new qualification and reliability issues.

• What’s the methodology to do this…?

Technology node Name Type 

130nm RTP3 Flash

90nm Virtex 4 SRAM

65nm Virtex 5 SRAM

65nm RTP4 Flash



FPGA Technology Qualification Methodology 
Three main areas for emphasis
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FPGA Technology Qualification Methodology 

• Fabless FPGA companies and wafer fabs have a unique relationship for technology 
qualification*.

• Each has responsibilities and both must share at the same time.

• Space community is additional partner in the qualification relationship.
– We can’t do most of these tasks, yet we must understand them and influence them where we 

need to.

Infant Mortality - Extrinsic Failures Long Term Life - Intrinsic Failures

Wafer Fab
• Defect Reduction
• Excursion Prevention
• Outlier elimination

• Wear out data/models
• WLR testing
• Process standardization

Joint Fab-
Fabless

• Wafer parametric limits
• Yield acceptance limits

• Wafer failure criterion
• Process customization

Fabless
Design

• Defect Isolation
• Product level screening/BI

• Use conditions & wear out rules
• Design for reliability
• Product reliability characterization

Space 
community

• Custom BI/screening
• Custom designs for reliability/radiation 

evaluation

• Derating
• Mission specific requirements
• Additional reliability/radiation testing

*S. Y. Pai, ‘Reliability Framework in a Fabless-Foundry Environment”, IRPS 2009



FPGA Technology Reliability Issues

http://stanford-online.stanford.edu/sesi04moore/docs/LowKDielectics4.pdf



Example 90nm Technology Qualification Data
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Technology qualification highlights:
• Lot requirements
• Derating
• Mission definition of failure
• Test structures and analysis



Foundry Differences – Virtex 5 
Intermetal Dielectric Differences

• CVD vs. Spin-On ILD/ UMC vs. Toshiba
• UMC - CVD carbon-doped oxide (SiOC) in M1-M6
• Toshiba - SiLK is used at the M1 – M6 levels
• SiLk k~2.65 vs. CVD k~2.8-3.0
• Subtle foundry differences can have possible 

significant impact on long duration, high 
reliability missions – particularly packaging

http://www.chipworks.com/en/technical-competitive-analysis/resources/technology-blog/2006/11/more-on-the-virtex-5/

UMC
Toshiba



Flash Based FPGA
• Non-volatile and reprogrammable/Low power/Rad tolerant

• Flash based interconnection is new to space applications

• Two transistor (2-T) cell with common floating gate between two devices

• The “Switch” device is used as the configuration switch in the FPGA fabric. 

• The “Sense” device is used to program the cell as well as for sensing the 
threshold voltage of the switch. 



Flash FPGA Technology Qualification 
• Flash cell reliability driven by electric field and temperature.

• Flash devices have data retention and endurance as new failure mechanisms 
that need to be included into overall FPGA qualification plan.
– 50% P/E cycle limit + 1,000 HTOL?

– Flash memory devices require error correction and wear leveling to ensure 
reliability as densities have scaled.  Same concerns here?

– Temperature dependence of program/erase operation?

– The behavior of individual bits can dominate reliability.

Flash Memory Reliability IRPS 2009 A. S. Spinelli and C. Monzio Compagnoni



New Technology Development Issues are 
just getting started 

• FPGAs are now technology drivers for top tier commercial foundries.
• We have many exciting new technologies to look forward to!



Recent Radiation Results 
FPGA Technology

Greg Allen - JPL

18



Introduction
• Historically, reconfigurable FPGAs have had relatively 

sensitive radiation responses
– Altera (SEL)

– Actel (TID/SEU)

– Xilinx (SEU/SEFI)

• The aerospace community has traditionally used one time 
programmable FPGAs (e.g. antifuse) due to relative 
SEE/TID robustness
– Increasing interest in recent years to implement reconfigurable 

devices (Xilinx QR in particular)

– Lead to challenges in mitigation, verification, and system error 
rate calculations 



Goals

• Full static radiation characterization of the Xilinx XQR5VFX130 
SIRF device in conjunction with the Xilinx Radiation Test 
Consortium
– Provide a methodology for NASA missions to determine error rates and 

mitigation methodologies (as necessary)

• Evaluate other reconfigurable FPGA vendors for SEE/TID 
– SiliconBlue iCE65
– Altera Stratix IV/Stratix V

• Evaluate non-volatile memory products as available
– SONOS devices
– Mitigated flash



SEE Mitigation—TMR and RHBD

• EDAC (Virtex-4)
– TMR and scrubbing

• Complicated implementation

• Increased engineering cost

• Complicated verification and error rate calculation

• RHBD (Virtex-5)
– Transparent implementation from the designer perspective

– Complex radiation response requires new flight qualification 
methodologies



General FPGA Radiation Effects 
Evaluation Path

• Single-Event Latchup

• Static Characterization (Heavy Ion/Proton)
– Configuration Elements, RAM, Registers, and Device-Level Single-Event 

Functional Interrupt

• Total Ionizing Dose Susceptibility

• IP Block Characterization (Dynamic Testing)
– Clock Management, I/O, Processors, Multipliers, etc.



Moving from Virtex-II/Virtex-4 SEE 
Verification to Virtex-5

• Previous Virtex devices’ error rate was dominated by static elements 
(namely configuration and BRAM cells). 

• A general outline for developing a mitigation scheme is outlined below:
– What is the underlying, unmitigated system error rate?

• Fault injection, accelerator testing, or software estimation
– What is the probability of observing an error?

• Error rate and operating period
– What is the level of mitigation that is going to be required?

• Engineering vs. reliability
– What level of configuration correction is going to be required?

• Level of error persistence
– How will this mitigation scheme be verified?

• Fault injection or accelerator testing

Enabling, yet SEU sensitive devices, require complex
upset mitigation to use in most cases



Moving from Virtex-II/Virtex-4 SEE 
Verification to Virtex-5

• Virtex-5 RHBD has virtually removed the static elements 

from the error model.  Now dominated by SETs. 

New methodology developed for characterizing dual-node configuration cells.  
The focus is now shifted to embedded IP elements.
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Technical Highlights

• CMT testing almost completed
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Technical Highlights

• BRAM and embedded BRAM EDAC evaluated for SEE



Technical Highlights
• SET testing on CLB

– Frequency dependence evaluation
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Technical Highlights

• SET testing on CLB
– SET Filter and Logic configuration (parallel vs. serial)
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Going Forward

• System fault characterization methodology for XQR5VX130
– Accelerator testing of SEFIs is complicated: cross-section dependence on 

LET, flux, rotation/tilt, and configuration monitor implementation
– System-level qualification is convoluted:

• Beam testing won’t express error rate from configuration bit upsets
– FY11 Product will be a complete XQR5VFX130 static/pseudo-static 

characterization report
– FY12 Product will be recommendations to estimate system error rates 

for various XQR5VFX130 designs.

• Unhardened IP characterization qualification
• Continued SEE testing of SiliconBlue and Altera FPGA

Complex SEE response will require flight qualification guidelines to be updated for 
this device



Packaging



FPGA Packaging
• The non-hermetic package is the beginning of a new era in packaging 

technology qualification - High density, high power VLSI devices

• Important implications for space applications

• What is required for risk management?

• Failure classification standards 
• Identification of failure mechanisms 
• Improved failure analysis techniques 
• Electrical/thermal/mechanical simulation
• Lifetime models with defined acceleration factor 
• Test vehicles for specific reliability characterization
• Early warning structures
• Space Quality Manufacturing guidelines



Xilinx V4/V5 Ceramic Package

• Each one of the highlighted areas is a qualification concern:
– Underfill/Chip Capacitors/SiC Lid/Adhesive/Solder columns/Substrate 

• Main stress tools are:
– Temperature cycle

– Temperature + humidity stress

– Mechanical bond stress

• Evaluation tools:
– C-SAM

– Electrical test (custom and product)



FPGA Packaging – Xilinx V4 Nonhermetic

Xilinx ADQ0007 

• Review and 
critique 

• Integrate in mission 
requirements

Class Y

• NEPAG
• Support 

documentation

Physics of Failure

• Additional testing
• Overall integration 

and risk 
management



Testing on Xilinx V4/V5 Non-hermetic Package

• Additional testing
– Joint Xilinx/Customer Daisy Chain CF1752 qual
– NEPP 

• CF1509 based board tests
• PEM upscreening comparison of COTS  FF series devices
• Underlayer LP2 underfill – (Jong-ook Suh)

– Thermal effects, outgassing, ageing due to plasma/radiation, vacuum, absorption.

J. Fabula, “A Review of the CF Package & the Implications of addendum Y”, MRQW 2010



V4 Daisy Chain – DPA



Cross Section of V4



COTS Flash FPGA DPA



Temp Cycle Qualification –
Manage Requirements with Different Packages

Bigger die and bigger packages have less capability 
in terms of total number of temp cycles

A Review of the CF Package & the Implications of addendum Y – J. Fabula MRQW 2010



Package – Future Challenges

http://www.xilinx.com/technology/roadmap/ssi-technology.htm

• High performance FPGA to FPGA connection challenge amount of available I/O and 
signal latency.

• Multiple FPGA die to be combined into single package with Through-Silicon Via 
technology

• Provides 100x improvement/increase in inter-die bandwidth per watt over 
conventional approaches



Applications



NEPP Focused FPGA Application Assurance 
Support for Flight Projects

• “I did ______ to the FPGA.  Is it going to be ok?”
• Provide NEPP generated engineering resource database of tests, 

measurements, and guidelines to support analysis:
– Lifetime calculations based on physics of failure
– Accelerated life test 
– Materials analysis and DPA 
– Risk management using guidelines and procedures

• Help to define next generation NEPP tasks that have broad agency 
relevance.
– Materials degradations
– SW/HW interactions
– Technology characterization
– Radiation Issues



Example Technology-Application Interaction:
ESD influence on High Speed Designs

D. Sheldon

• Data Rates are influenced by the ESD loading capacitance
• The requirement of low capacitance in turn degrades ESD levels
• At 100 fF and below, 2kV HBM cannot be achieved



ESD/EOS and Technology Scaling

• Continued technology scaling results in both metal current density and oxide 
breakdown voltage reduction

• Result is to close the ESD Window (Vbd – Vop) for High Speed Designs making it 
difficult to maintain 2kV HBM

• Protection versus Signal Integrity



Methodology for Derating VLSI Devices

• Historically space community derated 40°C from (usually assumed) maximum of 150°C, 
or 110°C derated.

• Assuming 0.7eV activation energy, the 40°C from 150°C to 110°C gives an acceleration 
factor of 7.43.  

– This factor can be viewed as “margin” for long life reliability.

• Modern FPGAs have Tj_max = 125°C.
• Now we need to find what temperature gives same margin value using 125C as the 

new derated maximum temperature.



Software



FPGA Design Flow

Actel Libero V 9.1

http://www.xilinx.com/itp/xilinx10/isehelp

• ~50% of FPGA companies resources are in software development.
• The software environment and its interaction with the hardware 
determine the reliability and radiation performance of the FPGA.
• The tradeoffs, options and behaviors represent future areas for NEPP 
guidelines and recommendations



Design Abstraction

• To take advantage of ever 
increasingly sophisticated vendor 
supplied IP, software tools are at 
higher levels of abstraction than 
traditional HDL.

• Risk vs. Opportunity

Actel Libero V 9.1



Model based SW development

• Variety of new tools to support design validation and verification.

• DO-254 Tools and requirements – Future requirement for NASA?

• The interaction of HW and SW – Can FPGAs solve historical SW problems?



Explore Project Quality Management 
S/W – Satin Technologies

• Ability to read and analyze a wide variety of 
files (csv, xls, SQL, DFT and STA reports, etc.)

• JavaScript based decision and parsing 
(arithmetic/natural language/etc.) 
formulism.

• Next generation tools to help manage 
complex projects.



The Future…



The future of commercial FPGA 
applications

• Intel Stellarton = Atom processor SoC + Altera FPGA 
• Emphasis on re-programmability, HW acceleration and customization

• Xilinx V7 = FPGA + ARM microcontroller/processor

• Actel Fusion = FPGA + ARM Cortex microprocessor

• In the future, SoC made up of processors and FPGA fabric could be 
standard high performance solution.

D. Sheldon



Future NEPP + FPGA Directions
• FPGA use will continue to grow in all aspects of spacecraft 

electronics.

• Power management will drive FPGA reliability.

• Transition to reprogrammable FPGAs as the norm.

• Guidelines for single event mitigation (SRAM and Flash)

• Technology reliability will require more details from foundries.
– Independent life test experiments are becoming too expensive.

• Application support and IP verification may be new NEPP 
product.
– Formal centers of FPGA test (HW and SW) may be required

• FPGA packaging will continue to challenge historical 
specifications and processes
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