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Introduction

• Field Programmable Gate Array(FPGA) Single Event 
Effect (SEE) Models have been developed by 
NASA/GSFC Radiation Effects and Analysis Group 
(REAG)
– Compartmentalize SEEs to enhance analysis
– Uses a top-down approach

• Details of SEE generation and other electrical 
properties are part of ongoing development

• Presented models are only expected to fit 
synchronous designs as per NASA design guidelines.
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Goal: 

• Application of the NASA REAG FPGA Single 
Event Upset (SEU) Cross Section (σSEU) Model to 
a variety of FPGA types
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Impact to Community

• Provides a standard method for comparing 
various types of FPGAs

• Enhances analysis by providing a means for 
evaluating Single Event Upsets (SEUs) and Single 
Event Transients (SETs):
– Generation
– System Propagation
– Evaluate effectiveness of mitigation strategies
– Determine dominant SEE components
– Eases the overall analysis process

• Analysis provides designers with dominant or 
insignificant susceptible components… 
enhanced design for radiation strategies
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Technical Highlights

• This presentation will focus on:
– Configuration: Pconfiguration

– Data Path functional logic: PfunctionalLogic

• Model Derivation is presented
• Model application to Microsemi FPGAs:

– RTAXs: Embedded Radiation Hardened by 
Design (RHBD)

– ProASIC3: No embedded mitigation
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Configuration

ionConfiguratP
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Place, Route, and Gate Utilization are 
Stored in the FPGA Configuration

• Configuration Defines: 
Arrangement of pre-existing 
logic via programmable 
switches
– Functionality (logic cluster)
– Connectivity (routes)
– Placement

• Programming Switch Types:
– Antifuse: One time Programmable (OTP)
– SRAM: Reprogrammable (RP)
– Flash: Reprogrammable (RP)
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Programmable Switch Implementation and 
Single Event Upset (SEU) Susceptibility

ANTIFUSE (OTP)
SRAM (RP)
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Configuration Test and Analysis
• Configuration is static during operation… hence we test 

and evaluate it statically
Antifuse SRAM FLASH SEU Hardened

SRAM
Manufacturer Microsemi

Aeroflex
Xilinx
Achronix

Microsemi Xilinx, Acrhonix
Atmel

Upset Signature Fuse 
Resistivity

Bit State Bit State or 
resistivity

Bit State

Configuration 
Test

Non-Specific Read-back
post-irradiation

Verify Post-
irradiation

Read-back post-
irradiation

Information from 
Configuration 
Test

N/A Upset
configuration 
bits

Pass/Fail Upset configuration 
bits

Results No upsets 
observed

Dominant 
upsets

Insignificant Low significance

REAG Tested Yes Yes Yes Atmel, AchronixYes/
Xilinx No
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Impact of Configuration Testing and 
Analysis to the REAG Model

REAG Model
Antifuse

SRAM (non-
mitigated)

Flash

Hardened SRAM

( ) SEFILogicfunctionalerror PfsPfsP +∝ )(

( ) ionConfiguraterror PfsP ∝
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Data Path Functional Logic and
Concepts of Synchronous Design
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Synchronous Design Basic Building 
Blocks: Combinatorial Logic and Flip-

Flops (DFF’s)

D   Q

reset

CLK

DFF: Captures data input at clock edge 
and is a function of the clock period (τclk)

Q=f(D,τclk)

Combinatorial Logic: Output is a 
function of the inputs after some 

delay(τdly) 
Output=f(input,τdly)
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Component Libraries: Basic Designer 
Building Blocks

• Combinatorial logic 
blocks 
 Vary in complexity
 Vary in I/O

• Sequential Memory blocks 
(Flip-flops or DFFs) 
 Uses global Clocks 
 Uses global Resets
May have mitigation
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DFF’s in a Synchronous Design

• All DFFs are connected to a clock
• Clock period: τclk
• Clock frequency: fs

Clock Tree

DFFs are BOUNDARY POINTs in a synchronous 
design

fsclk
1

=τ
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Deterministic Data Capture…Adhering 
to Setup and Hold Time for a DFF

Setup:
τsu

Hold:
τh

Data Launch from StartPoint
DFF1

clock

τdly : Data Delay 
through combinatorial 
logic and routes

Q

QSET

CLR

D

StartPoint
DFF1

EndPoint
DFF2

τdly

τclk
Q

QSET

CLR

D

Data Capture  is Deterministic when:

τdly

)( jitterskewsuclkdly τττττ ++−<
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DFFs are boundary points
Timing is performed from 
one DFF to the next DFF
For each DFF, data paths 
are traced backwards to 
their start-points

Combinatorial logic and 
routes are part of the delay

Making Setup Time: Static Timing 
Analysis (STA)

DFF0 DFF1 DFF2 DFF3
τdly0 τdly1 τdly2

Shift Register:

DFF0 DFF1
τdly01

τdly00

DFF2

τdly02

τdly21

16



To be presented by Melanie Berg at the NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop, 
Greenbelt, Maryland, June 28-30, 2011, and published on nepp.nasa.gov.

Start Point DFFs → End Point DFFs  
τdly and the “Cone of Logic”

))1(()( −= TStartDFFsfTEndDFF

Referred to as the “Cone of Logic” 

TT-1 T+1

Signal will arrive at 
destination by τdly … but it 
will not be captured until the 
next clock edge

τdly τclk
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System States
 System state is defined by the logic values within 

all DFFs 
 In between clock edges (intermediate points)

 Computations are occurring (combinatorial logic)
 SETs or SEUs can occur

 System state is captured at each rising clock 
edge... after clock cycle computations are 
completed

Note: Upsets occur at intermediate points.  They 
become part of the system state if they are 
captured into the next state
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Synchronous Design Take Away 
Points

• Basic Blocks: DFFs and Combinatorial logic
• DFFs are boundary points

– For each DFF (end point) there is a backwards trace to 
start point DFFs

– There is delay between start point DFFs and endpoint 
DFFs

• Combinatorial logic
• Routes

• SEE analysis is based on utilized DFFs in a 
design because an upset is not an upset unless it 
is captured by a DFF

The question is… If an upset occurs will it 
reach an endpoint DFF?
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Data Path Functional Logic

LogicfunctionalP
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Configuration versus Data Path 
(Functional Logic) SEE

• Configuration and Functional logic are 
separate logic

• Can be implemented with different 
technologies within one device (e.g. 
antifuse versus CMOS)

• Configuration is static and data paths are 
not.  Requires a different test and analysis 
approach

21

This explains why there are separate categories of 
error: 

Pconfiguration vs. PfunctionalLogic
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Combinatorial Sequential
Logic function generation 
(computation)

Captures and holds state of 
combinatorial Logic

SET: Glitch in the combinatorial 
logic: Capture is frequency 
dependent

SEU: State changes until next 
cycle of enabled input: Next state 
capture can be frequency 
dependent

Primary functional logic components can be classified into:
SEU and SET Background

SET effects are nonlinear and are heavily design and state dependent.

SET SEU
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Data Path Model and DFF Logic Cones
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Captured DFF Events

Probability for Captured 
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DFFk Cone of Logic
All Start Point DFFs and Combinatorial Logic gates that feed 

into End Point DFF under Evaluation (DFFk): 

Evaluate for 
Each DFF
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Combinatorial Logic Contribution to 
System Error in a Synchronous 

System: Capturing a SET

PSET→SEU
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SETs and a Synchronous System

• Generation (Pgen)
• Propagation (Pprop)
• Logic Masking (Plogic.)
• Capture

All Components comprise: 
PSET→SEU
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SET Generation: Pgen

• SET generation occurs due 
to an “off” gate turning “on”. 

• A transient in a CMOS circuit 
will be generated with an 
amplitude and width (τwidth) 
based on: 
– Amount of deposited charge 

(i.e. small Linear Energy 
Transfer (LET) values produce 
small transients)

– The strength of the gate’s load
– The strength of its 

complimentary “ON” gate 
– The dissipation strength of the 

process.
26
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SET Propagation to an EndPoint DFF: Pprop

• In order for the data path SET to become an upset, it 
must propagate and be captured by its endpoint DFF 

• Pprop only pertains to electrical medium (capacitance of 
path… combinatorial logic and routing) 
– Capacitive SET amplitude reshaping
– Capacitive SET width reshaping
– Small SETs or paths with high capcitance have low Pprop

• Pprop heavily contributes to the non-linearity of PSET→SEU 
because of the variation in path capacitance

27
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SET Logic Masking: Plogic

• Plogic: Probability that a SET can logically propagate 
through a cone of logic.  Based on state of the 
combinatorial logic gates and their potential masking.  

0<Plogic <1

Determining Plogic for a complex 
system can be very difficult

0<Plogic <1

“AND” gate reduces 
probability that SET 
will logically propagate
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clk

width
SEUSETclkP

τ
ττ ∝→)(

SET Capture at Destination DFF

Probability of capture is 
proportional to the width 
of the transient as seen 
from the destination DFF

fsfsP widthSEUSET τ∝→)(

Each combinatorial element can generate a 
transient.  The transient width will be a fraction 
of the clock period for a synchronous design in 
a CMOS process.
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DFF Contribution to System Error in a 
Synchronous System

PDFFSEU→SEU
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Conventional Theory:
System Upsets Have a Static 

Component+Dynamic Component

σ D
FF

er
ro

r

Frequency

( ) SEUSETDFFSEUerror fsPPfsP →+= )(

Composite Cross Section

PDFFSEU & PDFFMBU

Does not fully characterize DFF upsets as they 
pertain to a synchronous system

Takes into account upsets 
from combinatorial logic in 
DFF data path and the DFF 
potential for flipping its state
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SEUs and a Synchronous System: New 
Stuff

• Generation (PDFFSEU)
• Pprop=1 for hard state switch
• Logic Masking (Plogic.)
• Capture

All Components comprise: 
PDFFSEU→SEU
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Generation of DFF Upsets: PDFFSEU

• Probability that a DFF will flip its state
• Can be a hard flip:

– Will not change until the next clock cycle
– Amplitude and width are not affected as with a SET

• Can be a metastable flip
– No real defined state
– Otherwise known as a “weak” state
– Can cause oscillations in the data path

34
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Generation PDFFSEU versus
P(fs)DFFSEU→SEU

35

PDFFSEU P(fs)DFFSEU→SEU

Probability a Startpoint
DFF becomes upset

Probability that the 
Startpoint upset is 
captured by the endpoint 
DFF

Occurs at some point in 
time within a clock period

Occurs at a clock edge 
(capture)

Not frequency dependent Frequency dependent
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Logic Masking DFFs… Plogic

• Logic masking for DFF start points is similar to 
logic masking of combinatorial logic.

• DFF logic masking is generally the point where 
Triple Modular Redundancy (TMR) is inserted

VoterPlogic=0 
for DFFs… their 
upsets are masked

Plogic>0 
for Voter… its upsets 
are not masked
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• If a DFF is affected by an SEU it will change its state 
somewhere within a clock cycle at time τ

DFF Upsets (SEUs) and Next State 
Capture: PDFFSEU and PDFFSEU→SEU

τclk

Previous 
State

τ
clkττ <<0 τ Is defined to be within 1 clock period (τclk)

Will the endpoint DFF capture the 
upset?

Will the endpoint DFF 
capture the correct 
value? OR…
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0

1
1

0

1

SEU Capture Example: Assume 
τclk=15ns

If DFFD flips its state… 
0<τ<(5.5)ns

The upset will get caught… 
otherwise it’s as if the event 
never occurred

38
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Percentage of Clock Cycle for SEU Capture:

dlyclk τττ −<

clk

dlyclk

clk τ
ττ

τ
τ −

<

clk

dly

clk τ
τ

τ
τ

−<1

fsfs dlyττ −<1

Upset is caught within 
this timeframe

Fraction of clock 
period for upset 

capture

Fraction of clock period for 
upset capture wrt to 

frequency
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Putting it all together:
P(fs)functionalLogic=P(fs)DFFSEU→SEU+P(fs)SET→SEU

DFF SEU capture Combinatorial 
Logic SET 
capture

DFF SEU capture
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NASA REAG FPGA Data Path Functional 
Logic Susceptibility Model

LogicfunctionalfsP )(

( )SEUSETSEUDFFSEUDFF
fsPfsP →→ +∃ )()(









+−∃ ∑∑

==

ialCellsCombinator

i
iwidthicipropigen

DFFsStartPo

j
jicjdlyjDFFSEUDFF

fsPPPPfsP
#

1
)(log)()(

int#

1
)(log)()( )())1(( ττ

42



To be presented by Melanie Berg at the NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop, 
Greenbelt, Maryland, June 28-30, 2011, and published on nepp.nasa.gov.

NASA REAG FPGA Upper Bound 
Susceptibility Model
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Upper-bound assumes Plogic=1 (no mitigation) and 
NO DFF frequency (fs) dependency 
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NASA REAG Models + Heavy Ion Data:
RTAXs
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RTAXs FPGA Core Logic: Basic Building 
Blocks are R-CELLs and C-CELLs

C-CELL: Combinatorial 

R-CELL: Sequential + 
Combinatorial 

Combinatorial Logic is susceptible to Single Event Transients (SETs)
(RCELLs, CCELLs, and buffers are susceptible to SETs)

DFF
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Model Application to RTAXs: Embedded 
Localized Triple Modular Redundancy (LTMR)

( ) SEFILogicfunctionalionConfiguraterror PfsPPfsP ++∝ )(
Design Specific 
SEE upset rate

Configuration 
SEE upset rate

Functional logic 
SEE upset rate

Single Event 
functional 
Interrupt

SEUSETSEUDFFSEU fsPP →→ + )(

Combinatorial logic 
cells

(LTMR): DFF
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Testing Combinatorial Logic Contributions to 
SEU Cross-Sections: WSRs with Inverters
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RTAXs: SET Capture across LET affects WSR 
SEU Cross Sections

Increase Frequency→ Increase Cross section
Increase Combinatorial Logic → Increase Cross section
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RTAXs: SET Capture across LET affects SEU 
Cross Sections (Non-Linearity)

Low LETs: attenuation of Single Event 
Transients (SETs) at low LET values
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Non-Linear Effects:
WSR0 has the lowest σSEU at High 
LETs

WSR0 σSEU > WSR8 σSEU at Low LETs
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Why is WSR0 > WSR8 for Low LET?
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Why is WSR0 > WSR8 for Low LET? Proof 
using the REAG Model
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NASA REAG Models + Heavy Ion Data:
ProASIC
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Background: Micro-Semi (Actel) 
ProASIC3 Flash Based FPGA

• Originally a 
commercial device

• Configuration is flash 
based and has proven 
to be almost immune to 
SEUs

• No embedded 
mitigation in device

• Evaluation of user 
mitigation insertion has 
been performed

Word

Sensing

Floating Gate Switch In

Switching

Switch Out

Control gate (poly silicon)

Floating gate (poly silicon)

Tunnel oxide (100A-SiO2)

SiO2
Si2N
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Actel ProASIC3 Shift Register Study
• Shift Register Functional Logic Designs Under Test:

– Six WSR strings with various levels of combinatorial logic
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σSEU Test Results: Windowed Shift 
Registers (WSRs) No-TMR

• N=0: WSR with only DFFs
• N=8: WSR with 8 inverters between each DFF stage
• No Mitigation: σSEU WSR0> σSEU WSR8 For every LET 
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Why is WSR0 > WSR8 for Non-Mitigated 
ProASIC: τdly

Combinatorial Logic: InvertersQ
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For a clock period = τclk, if DFFa flips @ timeτ >(τclk −τdly)  then DFFb will 
never capture the upset. 

(0<τ<τclk)
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DFF Capture (P(fs)DFFSEU→SEU) for WSR0 is not the same as WSR8
because of τdly

Why is WSR0 σSEU > WSR8 σSEU for The 
Non-Mitigated ProASIC3 Design? 

New Research! 
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PfuntionalLogic: Comparison of PDFFSEU→SEU and 
PSET→SEU … How it Impacts System Susceptibility

PDFFSEU→SEU PSET→SEU
Logic Startpoint DFF Capture 

by Endpoint DFF
Combinatorial SET
Capture by Endpoint
DFF

Capture
percentage of 
clock period (τclk)

Frequency 
Dependency

As frequency increases,
PDFFSEU→SEU decreases

As frequency increases,
PSET→SEU 
Increases

Combinatorial 
Logic Effects

Increase Combinatorial 
logic increases τdly and 
decreases PDFFSEU→SEU 

Increase in 
combinatorial logic 
increases Pgen and 
increases PDFFSEU→SEU 
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Another Application of the 
P(fs)functionalLogic Model Components

• If the DFFs are mitigated and the σSEU is 
decreasing over frequency, how do you analyze 
this?
– Combinatorial logic effects are directly proportional to 

system frequency

– Hence, most likely not due to combinatorial logic… i.e
not PSET→SEU.

• More than likely, the DFFs are not as mitigated as 
you expected them to be
– As system frequency increases cross section decreases

– Plogic ≠0
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Local Triple Modular Redundancy (LTMR):
Triple DFFs Only

• Triple Each DFF + Vote+ Feedback Correct at DFF
• Unprotected:

– Clocks and Resets… SEFI
– Transients (SET->SEU)
– Internal/hidden device logic: SEFI

–Comb
–Logic

–Voter

–Voter

–Voter

LTMR
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ProASIC LTMR Shift Register Data Path 
Model
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σSEU Test Results: Windowed Shift 
Registers (WSRs) No-TMR versus TMR

• LTMR is effective and has reduced PDFFSEU

• LTMR: SEU cross Sections WSR0<WSR8 For every LET 
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Deliverables

• Further develop components of model for all 
FPGAs of concern

• Apply the model to an Application Specific 
Integrated Circuit (ASIC) Design

• Utilize the models to develop:
– Develop design guidelines for radiation effects per 

FPGA
– Evaluate strength of a variety of mitigation strategies 

per FPGA type
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Summary
• REAG has developed a FPGA SEE model:

– Specifically for Synchronous designs 
– Categorizes SEE upsets to assist analysis and test 

structure development
– Successfully applied across a variety of FPGA types
– Great method for comparing different device types
– Upper-bound version is mostly utilized
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