NEPP Electronic Technology Workshop June 28-30, 2011

National Aeronautics and Space Administration

NASA/DoD Lead-Free Project

Jim Blanche/Jacobs ESTS Group

Marshall Space Flight Center Huntsville, Alabama

•Assure NASA areas of interest are included in JG-	e reliability data from the NASA/DoD Pb- ect on Pb-free solder applications for part lead finishes and board finishes under
PP follow-on work •Support NASA/DoD telcons and face-to-face meetings •Update MSFC Pb-free solder lessons learned report -Status C -Compile	Pb-free solder risks and risk mitigation s for NASA e Pb-free alloy/Pb-free finish reliability in pplication CAVE projects on Pb-free solder e the LTESE flight and bench data

Schedule:

(tack)	2010			2011								
(LASK)	0	Ν	D	J	F	Μ	А	Μ	J	J	Α	S
Update Pb-free Lessons Learned						Ongo	oing					
CAVE ³ Status												
NASA/DoD Pb-Free Status												
LTESE Report												

Deliverables:

- •Updated MSFC Pb-free lessons learned report
- •Report on Pb-free alloy/Pb-free finish reliability
- •Reliability data from Space Station Pb-free experiment
- •Provide NASA/DoD Pb-free solder test results •Provide CAVE³ Pb-free solder projects status

NASA/DoD Lead-Free Electronics Project:

- Overview
- Vibration Test
- Mechanical Shock Test
- Thermal Cycle Test -55°C to +125°C
- Thermal Cycle Test -20°C to +80°C
- Combined Environments Test
- Drop Test

- This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Pb-free Solder Project which was the first effort to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community.
- The intended goal of the NASA/DoD project is to:
 - Determine the reliability of reworked solder joints in highreliability military and aerospace electronics assemblies.
 - Assess the process parameters for reworking highreliability Pb-free military and aerospace electronics assemblies.
 - Develop baseline recommendations for process guideline and risk assessment for assembling high-reliability Pb-free military and aerospace electronics assemblies

Invaluable technical, business, and programmatic contributions were provided by the organizations listed below.

- •BAE Systems
- Boeing
- •CALCE
- Celestica
- •COM DEV
- •DMEA
- •F-15 Program Office
- •Harris
- Honeywell

- Lockheed Martin
- •NASA Jet Propulsion Lab
- •NASA Marshall Space Flight Center
- NAVSEACrane
- Nihon Superior
- Raytheon
- Rockwell Collins
- Texas Instruments
- •TT Apsco
- •Warner Robins Air Logistics Center, Robins Air Force Base

NASA/DoD Lead-Free Project **Test Vehicle**

Test Vehicle

- Board Material: FR4 with a minimum T_g of 170°C
- Bare Boards: comply with IPC-6012 Class 3, Type 3
- Surface Finishes:
 - Immersion Silver
 - Electroless Nickel/Immersion Gold (ENIG)
- Solder: Eutectic SnPb (63Sn37Pb) Control
 - SAC 305(Sn3.0Ag0.5Cu)SN100C(Sn-0.7Cu-0.05Ni + Ge)

- The test vehicle PWA size is 14.5 X 9 X 0.09 inches with six 0.5-ounce copper layers. The design incorporates components representative of the parts used for military and aerospace systems and was designed to reveal relative differences in solder alloy performance.
- One hundred and ninety three (193) test vehicles were assembled by BAE Systems in Irving, Texas to J-STD-001D, Class 3. One hundred and twenty (120) of these test vehicles were "Manufactured" PWA's and seventy three (73) were "Rework" PWA's.

- "Manufactured" (Mfg.) test vehicles represent printed wiring assemblies newly manufactured for use in new product.
- The "Rework" (Rwk.) test vehicles represent printed wiring assemblies manufactured and reworked prior to being tested. Solder mixing (SnPb/Pb-free & Pb-free/SnPb) will be evaluated on all "Rework" test vehicles.

 FLUX: The flux systems used during soldering were "Iow residue" or no-clean fluxes and the group chose to clean the test vehicles after processing

SOLDER ALLOY	REFLOW SOLDERING	WAVE SOLDERING	MANUAL SOLDERING
SAC 305	ROL1	N/A	ROLO Tacky Flux
SN100C	ROLO	ORLO	ROLO Tacky Flux
Sn Pb Control	ROLO	ORM0	ROLO Tacky Flux

ROL0 = Rosin, Low flux/flux residue activity, < 0.05% halide

ROL1 = Rosin, Low flux/flux residue activity, < 0.5% halide

ORL0 = Organic, Low flux/flux residue activity, < 0.05% halide

ORM0 = Organic, Moderate flux/flux residue activity, < 0.05% halide

Test Parts

Component Type	Component Finish	Part Number
CLCC-20	SAC305 SnPb	20LCC-1.27mm-8.9mm-DC
QFN-20	Sn SnPb	A-MLF205mm65mm-DC
QFP-144 SnPb NiPdAu SAC305		A-TQFP144-20mm5mm-DC
PBGA-225	SnPb SAC405	PBGA225-1.5mm-27mm-DC
CSP-100	SnPb SAC105 SN100C	A-CABGA1008mm-1.0mm-DC
PDIP-20	Sn NiPdAu SnPb	A-PDIP20T-7.6mm-DC
TSOP-50	Sn SnBi SnPb	A-TII-TSOP50- 10.16x20.95mm8mm-DC

TEST	LOCATION	REFERENCE	ELECTRICAL TEST	ACCEPTANCE CRITERIA
Vibration	Boeing Seattle, WA	MIL-STD-810F, Method 514.5, Procedure I	Electrical continuity failure	Better than or equal to SnPb controls
Mechanical Shock	Boeing Seattle, WA	MIL-STD-810F, Method 516.5	Electrical continuity failure	Better than or equal to SnPb controls
Thermal Cycling	al Cycling Boeing Seattle, WA Rockwell Collins IPC-SM-785 Electrical continuity Cedar Rapids, IA failure		Better than or equal to SnPb controls at 10% Weibull cumulative failures	
Combined Environments Test	Combined Raytheon MIL-STD-810F ronments Test McKinney, TX Procedure I failure		Electrical continuity failure	Better than or equal to SnPb controls at 10% Weibull cumulative failures
Drop Testing	Celestica Toronto, Ontario	JEDEC Standard JESD22-B110A	Electrical continuity failure	Better than or equal to SnPb controls
Interconnect Stress Test (IST)	PWB Interconnect Solutions Inc. Toronto, Ontario	IPC-TM-650-2.6.26	Electrical continuity testing	3 thermal cycles simulate assembly and 6 thermal cycles simulate assembly and rework
Copper Dissolution Celestica Toronto, Ontario Rockwell Collins Coder Popida, IA		IPC-TM-650-2.1.1 ASTM-E-3	Cross section/ metallographic analysis	N/A

• 27 test vehicles were delivered to Boeing for vibration testing:

-5 SnPb "Manufactured" test vehicles (ImAg)

-6 Pb-free "Manufactured" test vehicles assembled with SAC305 paste (5 ImAg, 1 ENIG)

- 5 Pb-free "Manufactured" test vehicles assembled with SN100C paste (ImAg)
- -6 SnPb "Rework" test vehicles (5 ImAg, 1 ENIG)
- -5 Pb-free "Rework" test vehicles (ImAg)

- Conducted a step stress test in the Z-axis only (i.e., perpendicular to the plane of the circuit board).
- Subjected the test vehicles to 8.0 g_{rms} for one hour. Then increased the Z-axis vibration level in 2.0 g_{rms} increments, shaking for one hour per step until the 20.0 g_{rms} level was completed.
- Then subjected the test vehicles to a final one hour of vibration at 28.0 g_{rms}.

	% of Components Failed During Vibration Testing								
Includes Mixed	"Manufac	ctured" Test	Vehicles	"Rework" Test Vehicles					
Soldors	SnPb	SAC305	SN100C	SnPb	Pb-Free				
Solders	Paste	Paste	Paste	Paste	Paste				
Component									
BGA-225	84	98	100	100	100				
CLCC-20	32	43	90	35	68				
CSP-100	62	73	70	62	80				
PDIP-20	98	92	100	88	96				
QFN-20	0	21	20	8	10				
TQFP-144	60	63	64	70	70				
TSOP-50	62	73	86	77	80				

NA S

MINUTES TO FAILURE

Ranking of Solder Alloy/Component Finish Combinations

	Relative Ranking (Solder Alloy / Component Finish)											
	Sn37Pb/	SAC305/	Sn37Pb/	SAC305/	Rwk Flux Only/	Rwk Flux Only/	Rwk Sn37Pb/SAC405	Rwk Sn37Pb/SAC405	SN100C/			
BGA-225	Sn37Pb	SAC405	SAC405	Sn37Pb	Sn37Pb	SAC405	(SnPb Profile)	(Pb-Free Profile)	SAC405			
	1	3	3	3	3	3	3	3	3			
	Sn37Pb/	SAC305/	Sn37Pb/	SAC305/	SN100C/							
CLCC-20	Sn37Pb	SAC305	SAC305	Sn37Pb	SAC305							
	1	3	2	3	3							
	Sn37Pb/	SAC305/	Sn37Pb/	SAC305/	Rwk Flux Only/	Rwk Flux Only/	Rwk Sn37Pb/SAC105	Rwk Sn37Pb/SAC105	SN100C/			
CSP-100	Sn37Pb	SAC105	SAC105	Sn37Pb	Sn37Pb	SAC105	(SnPb Profile)	(Pb-Free Profile)	SAC105			
	1	1	1	2	1	2	1	3	1			
	Sn37Pb/	SN100C/	Sn37Pb/	Rwk Sn37Pb/	Rwk Sn100C/	SN100C/						
PDIP-20	SnPb	Sn	NiPdAu	Sn	Sn	NiPdAu						
	1	3	2	3	3	3						
	Sn37Pb/	SAC305/	Sn37Pb/	SAC305/	SN100C/							
QFN-20	Sn37Pb	Sn	Sn	Sn37Pb	Sn							
	1	2	1	1	2							
	Sn37Pb/	SAC305/	Sn37Pb/	SAC305/	Sn37Pb/	SAC305/	SN100C/					
TQFP-144	Sn	Sn	NIPdAu	NIPdAu	Sn37Pb Dip	SAC305 Dip	Sn					
	1	1	1	2	1	2	1					
	0-270h (C-2704 /	C= 270h (54 C205 /	CA C205 /	CA C205/				D 1 0 1 00 05 /	CN100C/	CN100C/
T000 50	Sn3/Pb/	Sn3/Pb/	Sn3/Pb/	SAC305/	SAC305/	SAC305/	Rwk Sn37Pb/	Rwk Sn37Pb/Sn	Rwk Sn37Pb/Sn	Rwk SAC305/	SN100C/	SN100C/
TSOP-50	SNPD	Sn 2*	SUBI 2*	Sn 2*	SNBI	SNPD	SNPD	(SNPb Profile)	(PD-free Profile)	SNBI	Sn	SUBI
	1 *D(21	2	2	Z*	2	2	2*	2*	2	2	2
1	*Perform	ance relat	tive to Sh	37PD control m	iay depend on or	ientation of the	ISON					
1 = as good a	s or pette	control	7PD CONT	01								
2 - much wo	rso than S	n27Dh.cor	atrol									
5 - much wo	ise man s	13790 001	iu oi									

Ranking of Solder Alloy/Component Finish Combinations

	Sn37Pb/	SAC305/	Sn37Pb/	SAC305/	Sn100C/
	Sn37Pb	SAC305	SAC305	Sn37Pb	SAC305
CLCC-20	1	3	2	3	3

1=as good as or better
than Sn37Pb control
2=worse than Sn37Pb
control
3= much worse than
Sn37Pb control

SUMMARY

- The results of this study suggest that for some component types, the Pb-free solders tested are not as reliable as eutectic SnPb solder with respect to vibration.
- Rework also had a negative effect on both SnPb and Pb-free solders with respect to vibration.

- A step stress shock test was performed to maximize the number of failures generated which allowed comparisons of solder reliability
- All of the shocks applied in the Z-axis
- 100 shocks applied per test level
- For Level 6 (300 G's), 400 shocks were applied instead of 100
- Testing continued until a majority (approximately 63 percent) of components failed

- Number of Test Vehicles Required 21
- Mfg. SnPb = 5
- Mfg. Pb-free = 5
- Rwk. SnPb = 5
- Rwk. SnPb = 1 {ENIG}
- Rwk. Pb-free = 5

Mechanical Shock Response Spectrum Test Levels

Component	Sn37Pb/Sn37Pb	SAC305/SAC405	Sn37Pb/SAC405	SAC305/Sn37Pb	Rwk Flux Only /Sn37Pb	Rwk Flux Only /SAC405	Rwk Sn37Pb/SAC405 (SnPb Profile)	Rwk Sn37Pb/SAC405 (Pb-Free Profile)		
BGA-225	1	1	2	1	1	1	2	1		
Component	Sn37Pb/Sn37Pb	SAC305/SAC305	Sn37Pb/SAC305	SAC305/Sn37Pb						
CLCC-20	1	2	2	2						
Component	Sn37Pb/Sn37Pb	SAC305/SAC105	Sn37Pb/SAC105	SAC305/Sn37Pb	Rwk Flux Only /Sn37Pb	Rwk Flux Only /SAC105	Rwk Sn37Pb/SAC105 (SnPb Profile)	Rwk Sn37Pb/SAC105 (Pb-Free Profile)		
CSP-100	1	1	2	1	2	1	2	2		
Component	Sn37Pb/SnPb	SN100C/Sn	Sn37Pb/NiPdAu	Rwk Sn37Pb/Sn	Rwk SN100C/Sn					
PDIP-20	1	1	1	2	2					
Component	Sn37Pb/Sn37Pb	SAC305/Sn	Sn37Pb/Sn	SAC305/Sn37Pb						
QFN-20	Not enough failures to rank									
Component	Sn37Pb/Sn	SAC305/Sn	Sn37Pb/NiPdAu	SAC305/NiPdAu	Sn37Pb /Sn37Pb Dip	SAC305 /SAC305 Dip				
TQFP-144	1	1	1	1	1	2				
Component	Sn37Pb/SnPb	Sn37Pb/Sn	Sn37Pb/SnBi	SAC305/Sn	SAC305/SnBi	SAC305/SnPb	Rwk Sn37Pb/SnPb	Rwk Sn37Pb/Sn (SnPb Profile)	Rwk Sn37Pb/Sn (Pb-Free Profile)	Rwk SAC305/SnBi
TSOP-50	Not enough failures to rank	Not enough failures to rank	Not enough failures to rank	Not enough failures to rank	Not enough failures to rank	Not enough failures to rank	2	2	2	2

SUMMARY

- Pure Pb-free systems (SAC305/SAC405 balls, SAC305/SAC105 balls, SAC305/Sn, and SN100C/Sn) performed as well or better than the SnPb controls (SnPb/SnPb or SnPb/Sn).
- For mixed technologies, SnPb solder balls combined with SAC305 paste reflowed with a Pb-free profile performed as well as the SnPb controls on both the BGA's and the CSP's.
- SnPb solder paste combined with either SAC405 or SAC105 balls reflowed with a SnPb thermal profile underperformed the SnPb/SnPb controls.
- Rework operations on the PDIP's and TSOP's reduced the reliability of both the SnPb and the Pb-free solders when compared to the unreworked SnPb/SnPb controls

SUMMARY (cont'd)

- Rework of SnPb and SAC405 BGA's and SAC105 CSP's using flux-only gave equivalent performance to the unreworked SnPb/SnPb controls.
- Pb-free BGA's with SAC405 balls reworked with SnPb paste and (and a Pb-free thermal profile) were also equivalent to the SnPb controls.
- The combination of SAC305 solder/SAC105 balls generally performed as well as the SnPb/SnPb for chip scale packages.

NASA/DoD Lead-Free Project Thermal Cycle -55°C to +125°C Test

Parameters:

- -55°C to +125°C
- 5 to 10°C/minute ramp
- 30 minute high temperature dwell
- 10 minute low temperature dwell
- Cycles: Test terminated at 4068 cycles

NASA/DoD Lead-Free Project Thermal Cycle -55°C to +125°C Test

- Number of Test Vehicles Required 27
- Mfg. SnPb = 5
- Mfg. Pb-free = 5
- Mfg. Pb-free {SN100C} = 5
- Mfg. Pb-free = 1 {ENIG}
- Rwk. SnPb = 5
- Rwk. SnPb = 1 {ENIG}
- Rwk. Pb-free = 5

NASA/DoD Lead-Free Project Thermal Cycle -55°C to +125°C Test

• Manufactured Test Vehicle after 3600 Thermal Cycles

Component Type	Total Failures	Population	Percent Failed
CLCC-20	232	311	74.6%
QFN-20	70	134	52.2%
QFP-144	228	309	73.8%
PBGA-225	156	279	56.0%
PDIP-20	160	220	72.7%
CSP-100	175	281	62.3%
TSOP-50	178	249	71.5%

• Reworked Test Vehicle after 3600 Thermal Cycles

Component Type	Total Failures	Population	Percent Failed
PBGA-225	27	66	40.9%
PDIP-20	41	60	68.3%
CSP-100	31	67	46.3%
TSOP-50	62	99	62.6%

NASA/DoD Lead-Free Project Thermal Cycle -55°C to +125°C Test SUMMARY

- CLCC: The completely Pb-free combinations (SAC/SAC and SNIC/SAC) were outperformed by solder/finish combinations that contained SnPb
- QFN: The QFN-20 components were the most robust component type in the investigation. The SnPb/Sn combination has the best thermal cycle performance
- QFP: N63 for all components ~2000-3000 cycles
- BGA: Significant range in N63 (~1500 –3900) without clear trends as to cause. Parts on reworked boards had larger N63s
- CSP: SnPb parts had somewhat better reliability; reworked parts generally more reliable
- TSOP: significant differences among parts –analysis needed to understand
- PDIP: SnPb/Sn had best reliability

NASA/DoD Lead-Free Project Thermal Cycle -20°C to +80°C Test

- Approximately 11,000 cycles have been completed as of May 17, 2011
- No lead-free BGAs or CSPs have failed
- Hope to complete 17,000 thermal cycles

 The Combined Environments Test (CET) for the NASA-DoD Lead-Free Electronics Project was based on a modified Highly Accelerated Life Test (HALT), a process in which products are subjected to accelerated environments to find weak links in the design and/or manufacturing process.

- Number of Test Vehicles Required 27
- Mfg. SnPb = 5
- Mfg. Pb-free {SAC 305}= 5
- Mfg. Pb-free {SN100C} = 5
- Mfg. Pb-free = 1 {ENIG}
- Rwk. SnPb = 5
- Rwk. SnPb = 1 {ENIG}
- Rwk. Pb-free = 5

Parameters

- -55°C to +125°C
- 20°C/minute ramp
- 15 minute soak
- Number of cycles ≥ 500
- Vibration for duration of thermal cycle
- 10 G_{rms}, initial
- Increase 5 G_{rms} after every 50 thermal cycles
- 55 G_{rms}, maximum

- The part type had the greatest effect on solder joint reliability; solder alloy had a secondary effect
- The plated-through hole parts {PDIP-20} were more reliable than the SMT parts
- The TQFP-144 and QFN-20 parts performed the best of the SMT parts
- The BGA-225 parts performed the worst

SUMMARY (cont'd)

- SnPb finished parts soldered with SnPb solder paste were the most reliable
- SAC soldered parts were less reliable than the SnPb soldered controls
- SnPb contamination on BGA-225 parts degrades early life performance of Sn100C and SAC 305 solder paste

• Number of Test Vehicles Required - 21

Mfg. SnPb = 5 Mfg. Pb-free = 5 Rwk. SnPb = 5 Rwk. SnPb = 1 {ENIG} Rwk. Pb-free = 5

- Shock testing conducted in the -Z direction
- 500G peak input, 2ms pulse duration
- Test vehicles were dropped until all monitored components failed or 20 drops had been completed

Drop Table with Fixtured/Wired Test Vehicles

Mechanical Failures

PAD CRATERING

Electrical Results

- Vast majority of electrical failures were PBGAs
- Wide range in # of drops until failure
- 40% failed electrically within less than 6 drops
- 99% failed electrically by 20 drops
- All CSPs electrically passed drop testing
- Less than 1% of non-BGA components electrically failed after 20 drops

SUMMARY

- Component *location* on the board plays a large role
- Component type plays a large role in drop test results
- Significant mechanical damage occurs well before electrical failure
- Mixed solder joints fail sooner than pure SnPb BGAs
- Reworking reduces the mechanical robustness of BGAs

NASA/DoD Lead-Free Project Drop Test SUMMARY (cont'd)

- Both electrical and mechanical damage was at a minimum for non-BGA parts
- Predominant failure mechanism was pwb-side pad cratering
- Of parts subjected to failure analysis ~1/3 that passed electrical test had mechanical damage

The website for the NASA/DoD Lead-free Project is:

http://teerm.nasa.gov/NASA DODLeadFreeElectronics Proj2.html

