

Parts Reliability and System Reliability

Yuan Chen¹, Amanda M. Gillespie², Mark W. Monaghan², Michael J. Sampson³, Robert F. Hodson¹

¹NASA Langley Research Center, ²SAIC-LX-2, NASA Kennedy Space Center, ³NASA Goddard Space Flight Center

Purpose

- Parts reliability and system reliability
 - Fundamental differences between basics
 - Relationship between parts reliability and system reliability
 - Impact of parts reliability on system reliability
- Understanding the assumptions and limitations of each analysis
 - Questions:
 - Using system reliability to direct parts selection
 - Interpreting system reliability in absolute values
 - Example: flight computing architectures for common launch vehicles
- Misconceptions on parts selection strategy

Outline

- Purpose
- Flight computing architectures
- System reliability analysis
- Parts reliability impact on architecture reliability
- Parts selection
- Conclusion

Flight Computing Architectures

- Fully Cross-Strapped Switched Triplex Voter (FCSSTV)
- Partially Cross-Strapped Switched Triplex Voter (PCSSTV)
- Channelized Bussed Triplex Voter (CBTV)
- Fully Cross-Strapped Switched Self-Checking (FCSSC)
- Fully Cross-Strapped Bussed Self-Checking (FCSBSC)
- Channelized Bussed Self-Checking (CBSC)

3 Voter, 3 Self-Checking 3 Switched, 3 Bussed Highly Channelized, Partially & Fully Cross-Strapped Architectures

Example of Architectures

Y. Chen // NEPP ETW 6-11-2012

Assumptions

- Fault tolerance
 - One fault tolerance by design for all function element groups
- Failure modes
 - Only hard or non-recoverable failures considered
 - No common failure mode included
- Failure rate and failure criteria
 - Same for each type of sensors and effectors

Architecture Reliability Plot

Architecture Reliability Table

Architecture	R (24 hrs)	R (9 months)
FCSSTV	0.999993	0.666999
PCSSTV	0.999991	0.613596
CBTV	0. <mark>9999</mark> 79	0.464581
FCSSC	0.999992	0.648547
FCSBSC	0.999992	0.646730
CBSC	0.999960	0.357675

Parts reliability does not matter for short missions??

This is system reliability; it is <u>system</u> reliability which does not show much difference, <u>NOT parts</u>!!

Y. Chen // NEPP ETW 6-11-2012

Exponential for System Reliability

• **Exponential** $MTTF_{exponential} = 1/\lambda$

Assumption: random defects; no infant mortality

- Workmanship and proper build and assembly issues are not considered
- Results misleading if one or some of the parts not properly screened or used under certain bias condition when different failure modes may occur

Weibull for System Reliability

• Weibull $MTTF_{Weibull} = \alpha * \Gamma(\frac{1}{\beta} + 1)$

- Failure modes for $\beta < 1$, =1, >1

 Weibull to replace Exponential in system reliability analysis and $MTTF_{Weibull} = MTTF_{Exponential}$ Explore impact of parts operating Assume the same in 3 regions by changing β

Impact of β only: impact of parts reliability in terms of operating regimes, not lifetime, on system reliability

parts lifetime

System Un-reliability Distribution

FC is the biggest contributor Assume different β while keeping the same MTTF

Impact of β

System Ingraving Distriction

System reliability: should not focus on the absolute numbers, but on how to improve overall reliability

Misconception I

- Misconception: Less Stringent Component Selection Plan for Shorter Missions
 - Depends on the actual architecture
 - May yield a less stringent up-screening procedure
 - May suggest "lower grade parts" and "upgrading"
 - NASA NEPP cost model indicates more costly.

Beta	R (24 hrs)						
	FCSSTV	PCSSTV	CBTV	FCSSC	FCSBSC	CBSC	
0.5	0. <mark>99</mark> 5388	0. <mark>99</mark> 5412	0. <mark>99</mark> 4807	0. <mark>99</mark> 3915	0. <mark>99</mark> 3867	0. <mark>99</mark> 2985	
0.8	0. <mark>9999</mark> 35	0. <mark>9999</mark> 32	0. <mark>999</mark> 878	0. <mark>9999</mark> 10	0. <mark>9999</mark> 23	0. <mark>999</mark> 825	
1.0	0. <mark>99999</mark> 3	0.999991	0.999979	0. <mark>99999</mark> 2	0. <mark>99999</mark> 2	0. <mark>9999</mark> 60	
2.0	0. <mark>9999</mark> 86	0.999984	0. <mark>9999</mark> 85	0. <mark>9999</mark> 81	0. <mark>99999</mark> 4	0. <mark>9999</mark> 81	

Misconception II

- System Reliability Analysis and System Level Testing are Sufficient for Component Selection and Component Level Testing
 - Roles and limitations of system reliability early failures
 - Testing at system does not give full access to parts characteristics translation
 - Impact of parts reliability on system reliability depends

Conclusions

- Parts reliability, not only lifetime, but also the operation regimes, has direct impact on system reliability.
 - Workmanship and effectiveness of screening has greater impact on system reliability.
- Critical for space missions to evaluate the risk, risk mitigations and impacts of the parts selection plan
 - Not technically justified:
 - a "less stringent" parts plan for shorter missions
 - an attempt to use system reliability analysis and testing for component selection or reliability
 - Both system reliability analysis and parts reliability analysis must be fully understood and fully implemented to ensure mission success.
 - Screening is the key!!