NEPP Electronic Technology Workshop June 11-15, 2012

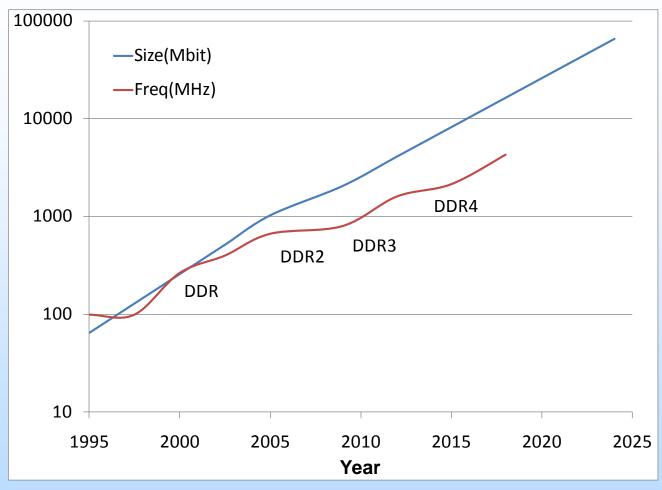
National Aeronautics and Space Administration

Combined Effects on DDR* Class Memories

Ray Ladbury

Radiation Effects and Analysis Group NASA Goddard Space Flight Center Greenbelt, MD 20771 USA

*Double-Data-Rate



Acknowledgements

- Defense Threat Reduction Agency
- GSFC Radiation Effects and Analysis Group
 - Dakai Chen, Megan Casey, Alyson Topperand Joe Portner
- NASA Electronic Parts and Packaging (NEPP) Program
- Micron Technology, Inc.
 - Brian Bradford and Daniel Craig
- Triad Spectrum
 - Ray Chao, Gary Ng, Mike Mikula

DDR SDRAM vs. FLASH

DDR SDRAM—Double-Data Rate Synchronous Dynamic Random Access Memory

 Higher speed and endurance/retention make DRAM a better option in some applications than FLASH despite volatility and smaller size.

Introduction

- 2011 testing: DDR2 SDRAMs hard to total ionizing dose (TID)
 - Parametric failures between 150 and 300 krad(Si)—only for biased parts
 - Functional Failure ~1 Mrad biased, 900 krad(Si) unbiased (little difference)

Goal for 2012: Investigate synergistics between TID and Aging

- Use overvoltage + elevated temperature 1000 hour "burn-in" to accelerate:
 - Electromigration (EM) and Stress migration (SM)
 - Hot Carrier Effects (HCE)
 - Time-Dependent Dielectric Breakdown (TDDB)
 - Negative Bias Temperature Instability (NBTI), etc.
- Do degradation mechanisms (aging) affect TID response?
 - Functional?
 - Parametric
- Is the strong bias dependence observed for virgin parts affected?
- Approach—Start with Industry standard life testing procedures and adapt as required to simulate ~10 years aging.
 - Test parts are 1-Gbit Dual Inline Memory Modules (DIMMs) from Samsung and Micron
 - Micron DDR2—MT47H128M8HQ
 - Samsung DDR2—M379T2863FB3-CF7

SDRAM Subtask

Description:

 This is a continuation task for evaluating the effects of scaling (<100nm), new materials, etc. on state-of-the-art (SOTA) mass volatile memory (VM) technologies—mainly SDRAM. The intent is:

- To determine inherent radiation tolerance and sensitivities,
- Identify challenges for future radiation hardening efforts,
- Investigate new failure modes and effects, and
- Provide data to DTRA/NASA technology modeling programs.

-Testing includes total dose, single event (proton, laser, heavy ion), proton damage (where appropriate) and reliability. Test vehicles will include a variety of volatile memory devices as available, including DDR2 SDRAMs and commercial SRAMs... and DDR3 devices

–Emphasis for 2012 will be synergistic degradation resulting from aging and total ionizing dose (TID) response, but SEE testing also planned.

Schedule:

SDRAM radiation response	2011			2012									
	0	Ν	D	J	F	Μ	А	Μ	J	J	А	S	
Part Stress Conditioning													
TID testing DDR2 + DDR3													
Develop Guidelines for TID									1				
+ Stress/Aging testing									ļ				
Delivery of final reports and													
Guidelines													
SEE testing of DDR2													
SEE testing of DDR3													

Subtask lead: Ray Ladbury

FY12 Plans:

- TID test structures
 - DDR2 and DDR3 SDRAM from Samsung and Micron
 - DDR2 SDRAMs from Elpida (courtesy of 3D Plus)
 - TID/reliability tests will use the new Triad Memory tester
- Test focuses
- Evaluate potential synergistic effects of TID and SDRAM aging
 - Use thermal and voltage acceleration methods
 - Evaluate degradation due to aging/stress
 - Compare TID response of stressed to unstressed parts

- SDRAM SEE response for current generation DDR2 and DDR3 SDRAMs if funding, tester capability and time allow.

Deliverables:

-Updated SSR Radiation Guidelines

-Updated guidelines for TID testing of SDRAMs taking into account wearout mechanisms

- Test reports

-Publications

–Effects of Bias, Electrical and Thermal Stress on DDR SDRAM Total Ionizing Dose Response

-NASA and Non-NASA Organizations/Procurements:

-Beam procurements: GSFC/REF, TAMU, LBNL

-Partners: 3D Plus, JPL, Micron, Samsung, BAE Systems

- Assess TID capability of SOTA DDR2
 - Current generation parts ~30 nm min. feature size
 - Previous tests (~90 nm) failure occurred ~150-250 krad(Si)
- Independently assess reliability/life testing
 - Work with vendor to reproduce standard test regime
 - Assess degradation in performance and functionality
- Look for Evidence of Synergy
 - Rationale—TID, TDDB and HCE, NBTI, etc. all depend on and modify oxide properties
 - Also, all these stresses erode margins, affect timing critical for operation of DDR devices
- Extend study to DDR3 devices for both Samsung and Micron

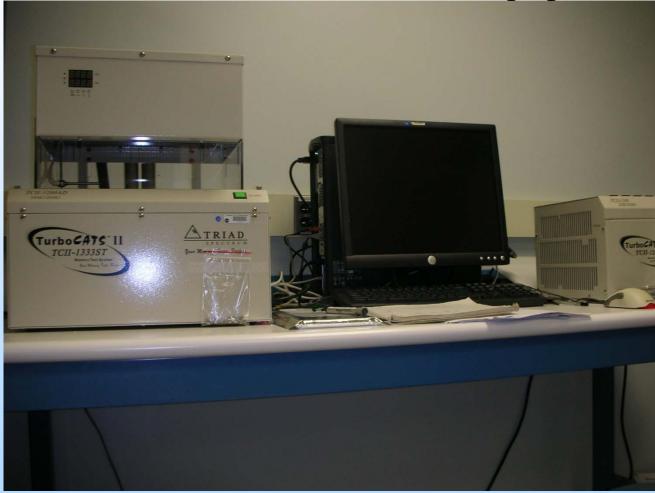
Expected Impact to Community

- Increase confidence for use of DDR devices in space environments
 - Validate life testing for conditions of use in space
 - Validate reliability test methods
- Identify new failure mechanisms
 - Reduce risk
 - Refine test methodologies and standards
- Determine whether TID and reliability can be assessed independently
 - Do synergies exist, and are they important for assessing reliability or for qualification strategies?

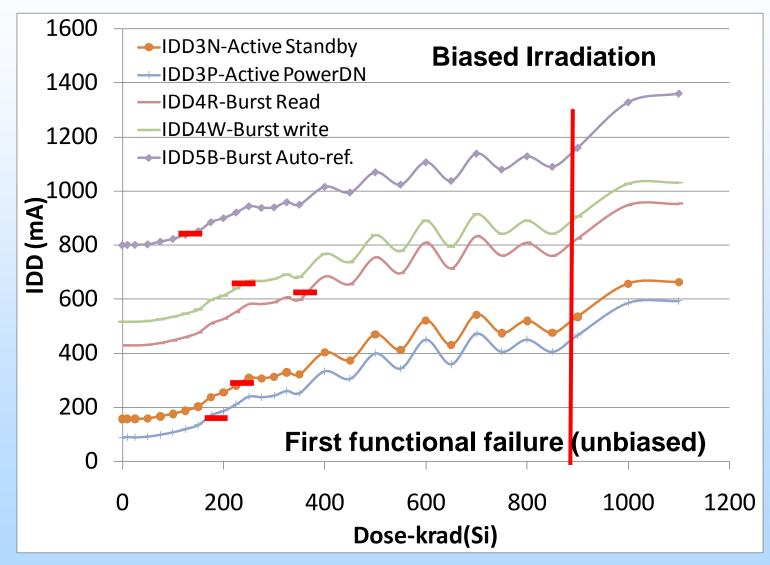
Status/Schedule

- DDR2 DIMMs—Samsung and Micron
 - Initial TID testing of Samsung DDR2 completed 2011
 - Aging study completed on Samsung DDR2 1/2012
 - 85 °C + 50% overvoltage for 1000 hours ~10 yrs for operating temperatures up to 40 °C
 - Overvoltage effect questionable due to internal regulation
 - Triad tester used for both aging study and parametric/functional testing
 - TID testing of aged Samsung DDR2s completed 1/2013
 - Initial TID testing of Micron DDR2 completed 4/2012
 - Aging Study for Micron DDR2s completed 6/2012
 - TID testing of Micron DDR2—6/2012
 - Full results to be reported @ NSREC 2012 in Miami
- DDR3 DIMMs to be tested once DDR2s completed
 - Triad is unavailable for testing while parts are undergoing aging
 - Same CMOS generation for DDR2/DDR3-expect similar behavior

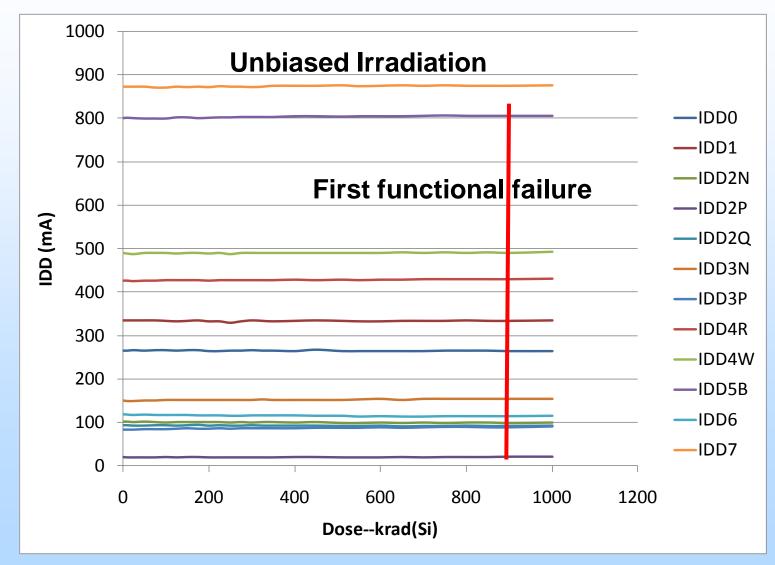
DDR Parametrics



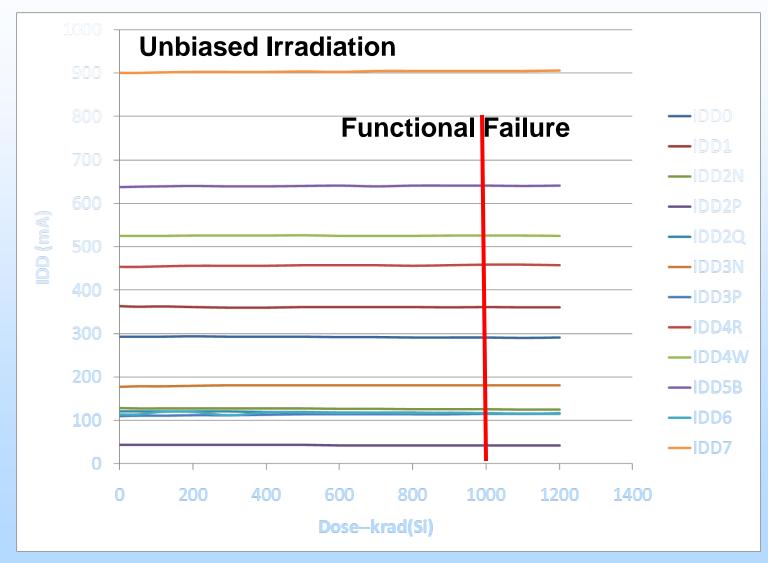
Parametric measurements limited to current drawn, timing

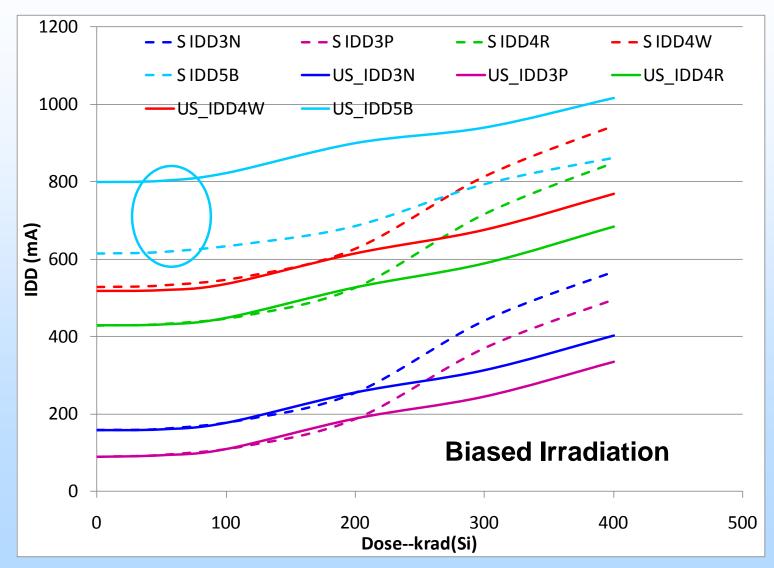

Symbol	Test Conditions	
IDD0	Operating one bank active-precharge current ; tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, CS# is HIGH betw een valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING	
IDD1	Operating one bank active-read-precharge current ; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC =tRC(IDD), tRAS = tRASmin(IDD), tRCD = tRCD(IDD); CKE is HIGH, CS# is HIGH betw een valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W	
IDD2P	Precharge power-down current ; All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	Sensitive
IDD2Q	Precharge quiet standby current:; All banks idle; tCK = tCK(IDD); CKE is HIGH, CS# is HIGH; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	Parameters for Micron
IDD2N	Precharge standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, CS# is HIGH; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	
IDD3P	Active power-down current; All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	
IDD3N	Active standby current; All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS# is HIGH betw een valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	Sensitive
IDD4W	Operating burst write current ; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS# is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING	Parameters
IDD4R	Operating burst read current ; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS# is HIGH betw een valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W	for Samsung
IDD5B	Burst auto refresh current; tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, CS# is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	
IDD6	Self refresh current; CK and CK# at 0V; CKE ≤ 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING	Sensitive for Micron
IDD7	Operating bank interleave read current ; All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), tRC = tRCD(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS# is HIGH betw een valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R	

- Triad tester automatically measures timing, current while providing clock and control of DIMMs
 - Used for both measurement and aging

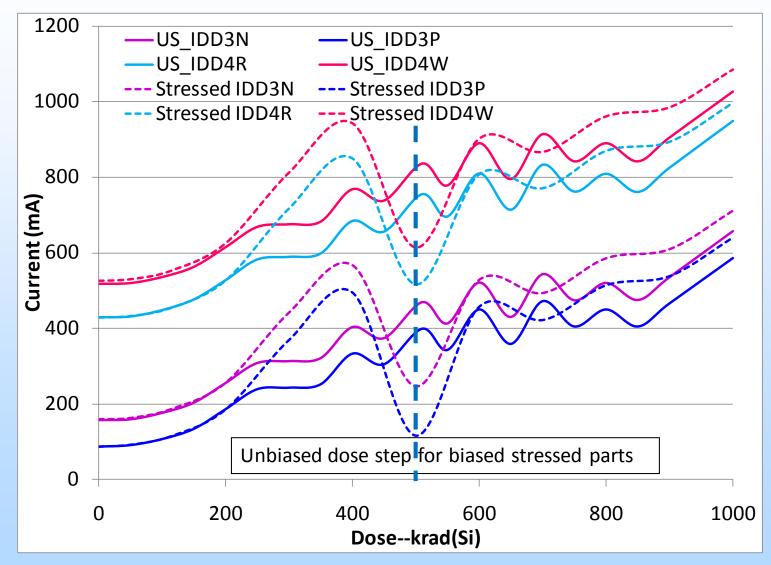


Review of Unstressed Samsung DDR2 SDRAM



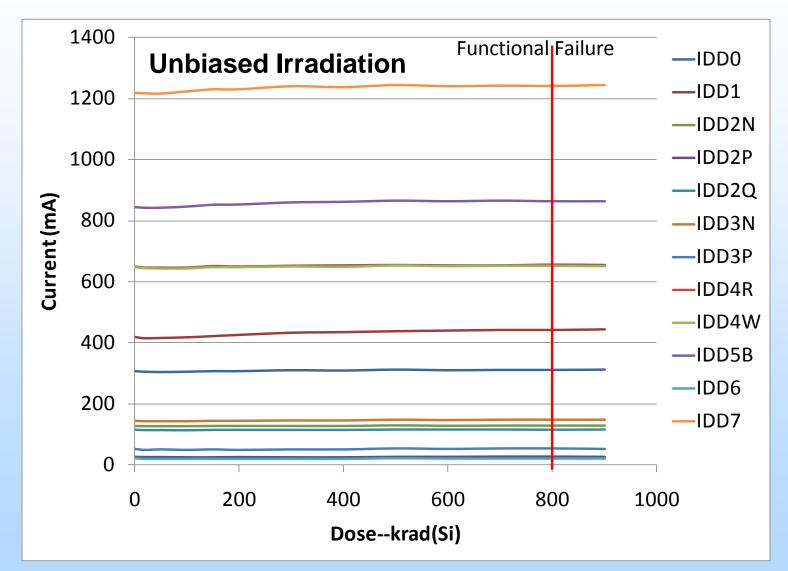

Review of Unstressed Samsung DDR2 SDRAM

New: Stressed Samsung DDR2 SDRAM--Unbiased

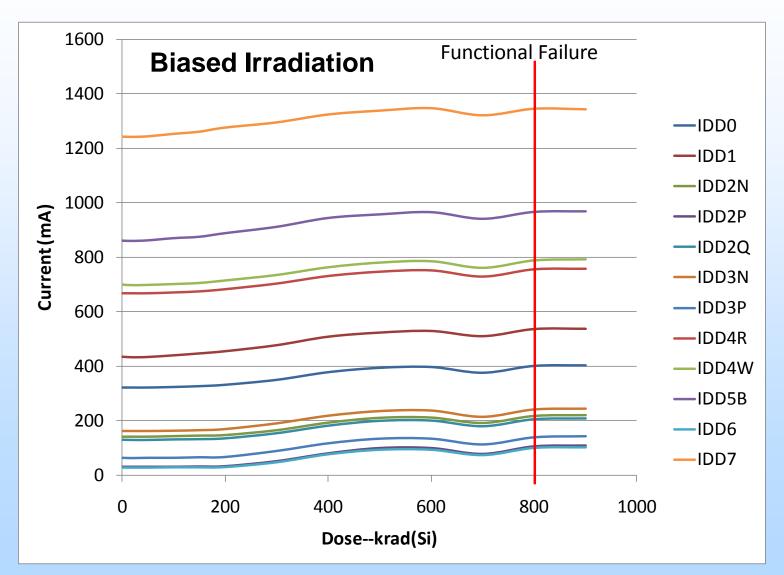


Technical Highlights <u>Comparison Samsung DDR2 SDRAM—Biased</u>

Comparison Samsung DDR2 SDRAM—Biased

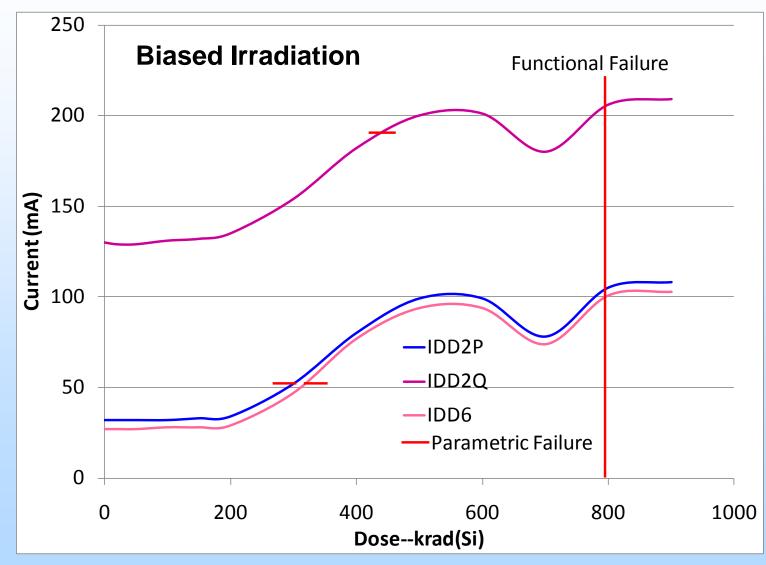


Summary: Samsung DDR2 TID and Aging


- Unbiased irradiation—Almost no change in operating currents, but functional failure at same level as biased parts
- Biased irradiation—monotonic increase in operating currents especially
 - IDD3P—Active Power-Down Current
 - IDD3N—Active Stand-By Current
 - IDD4R—Operating Burst Read Current
 - IDD4W—Operating Burst Write Current
 - IDD5B—Burst Auto-Refresh Current
 - All other currents remain within specification up to and beyond failure.
- Functional Failure occurs @1 Mrad(Si) ±100 krad(Si)
 - Most vulnerable for most dynamic tests (e.g. hammer and Marching patterns)
- Effect of Aging
 - TID in Biased DIMMs similar for stressed and unstressed up to ~200-300 krad(Si)
 - Failures doses unaffected
 - Above ~200 krad(Si), stressed parts degrade slightly more rapidly than unstressed
 - Unbiased DIMM TID response is unaffected by prior applied aging stress
 - Functional failure doses and modes unaffected by stress

NASA

Technical Highlights Unstressed Micron DDR2 SDRAM



Technical Highlights Unstressed Micron DDR2 SDRAM

Unstressed Micron DDR2 SDRAM—Parametric Failures

What Does It Mean?

- Current Generation DDR2 SDRAMs are TID hard
 - Samsung DDR2s fail parametrically (DC) between 150-400 krad(Si) (biased only) and functional failure ~1 Mrad(Si) (biased and unbiased)
 - Micron DDR2s fail parametrically (DC) from 250-500 krad(Si) (biased only) and functionally ~800 krad(Si) (biased and unbiased)
 - Sensitive parameters are IDD2P, IDD2Q and IDD6
- Manufacturer life-testing can be simulated with commercial testers
 - Moderate overvoltage (~50%) and elevated temperature (85 °C) @ 1000 hrs yields ~10 yrs. of aging.
 - Internal voltage regulation limits efficacy of overvoltage for memory core
 - Different degradation mechanisms have different overvoltage and temperature dependence—difficult to define a single acceleration factor
- Samsung DDR2s show minor enhancement of TID damage w/ aging
 - Does not significantly affect parametric or functional failure doses
- Results for Stressed Micron DDR2s this month—see you @ NSREC
- For now, results indicate TID and aging effects can be assessed independently, despite minor synergistic interaction