

NEPP Electronic Technology Workshop June 11-13, 2012

DDR2 Device Reliability Update

Steven M. Guertin

Jet Propulsion Laboratory / California Institute of Technology

Pasadena, CA

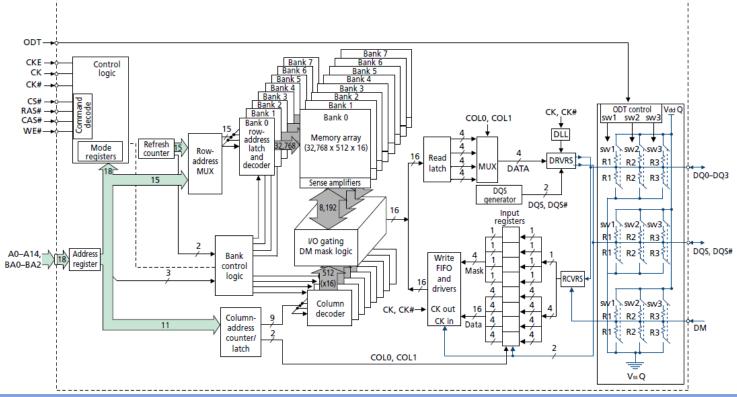
This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, Under contract with the National Aeronautics and Space Administration (NASA) This work was funded by the NASA Electronic Parts and Packaging Program (NEPP)

Copyright 2012 California Institute of Technology. Government Sponsorship is acknowledged. To be presented by Steven M. Guertin at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 11-13, 2012,

NASA GSFC. Greenbelt, MD

Outline

- Background
- Reliability Qualification Approach
- Test Equipment
- Recap of Last Year's Results
- Initial DIMM Results


General Reliability

- General reliability is interested in the failure modes that will manifest as a result of any environment, age, or usage parameters
- But manufacturers devote significant resources to testing these devices – why do we need to test, and how are we different?
 - On a device-by-device basis, we have much more time to screen all parts.
 - Ability to identify outlying devices is a useful screening method that can be applied to devices used in space
 - Certain parameters of NASA use may be outside of standard usage – long life, extreme environments, off-spec sheet use
 - We need to be knowledgeable about running these devices to support program questions

To be presented by Steven M. Guertin at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 11-13, 2012, NASA GSFC, Greenbelt, MD.

Device Complexity

- Many different types of structures:
 - DRAM Cells, Registers, Buffers, Drivers, Voltage Regulators, Charge Pumps, Functional blocks: CRC, Pipelines, State Machines
 - Each has its own failure risk and parameter dependencies

To be presented by Steven M. Guertin at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 11-13, 2012, NASA GSFC, Greenbelt, MD.

Approach

- Use acceptance testing to establish outliers
 - 100's of test hours per device possible
 - Compared to minutes or less by manufacturer
- Perform accelerated life testing
 - Establish failure mechanisms of a given lot
 - Determine if the lot meets requirements

$$X(p, M, F(t), Pat(t), V, T, f, D, S(t)) = \begin{cases} Pass / Fail \\ Range \\ Limit \end{cases}$$

- General reliability testing covers a vast set of target parametrics and operating parameters
 - p parameter (e.g. data access time)
 - M device mode
 - F(t) device function during test
 - Pat(t) data pattern during test
 - V operating bias
 - T environment temperature
 - f clock rate
 - D duty cycle
 - S(t) stress history of device

In addition:

of test devices in sample

|#Counts

- # of desired manufacturers
- # of test lots

General reliability test matrix is intractable - it requires targeted selection of tested elements.

Things to Measure

- Presently we do the following
 - Monitor current under different operating modes
 - Extract the cell retention time
 - Examine changes over 1000 hour stress test
- We are working towards (up-screen/life test)
 - Examine leakage current on I/Os
 - Determine output voltages
 - Determine the operating frequency range
 - Run pattern-based screening tests

Pattern Dependency

- DRAM storage arrays may have complex pattern dependency
 - Time intensive
 - Huge space of potential patterns
 - Cell retention can be related to pattern used
- Will be invaluable for handling flight anomalies
 - Any observed pattern dependencies during testing can be applied to flight
 - Ability to rule out reliability at a source of flight anomalies is useful

Moving to DIMMs

- Pros
 - Very low cost per device (~10\$ vs. ~200\$)
 - Interchangeable between testers (standard)
 - Enables many types of testing to establish device details
- Cons
 - Impossible to measure individual power
 - All devices on same DIMM in same exposure group
 - Difficult to get desired device parameters
- Bottom Line
 - Will provide a good way to sample many different types of issues
 - May provide good data but are not a vehicle for buying flight parts
 - Test equipment may be viable for flight acceptance...

Test Resources @ JPL

Clockwise: Single DUT tester, mounting in environment chamber, multi-DUT chamber

- Uses JPL's DUT mounting design

MCA-3

To be presented by Steven M. Guertin at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 11-13, 2012, NASA GSFC, Greenbelt, MD.

Test Resources @ JPL

- Credence D10 is a highcapability tester (up to 400MHz, but not well suited to run DUTs at high speed due to expense of interface board)
- Good for testing detailed timing parameters, leakage currents, and I/O voltage levels.
- Life testing, high speed operation, and patterndependent characterization of devices will still require other resources

Plan to have this online for individual parts in August 2012

Eureka Tester

- Added an industrial DDR2 DIMM tester
 - Performs standard acceptance tests on DIMMs
 - Frequency range, standard pattern sensitivity

Also built adapter between loose test parts

 Interchangeable with functional & parameter testers

National Aeronautics and Space Administration DIMM Adapter

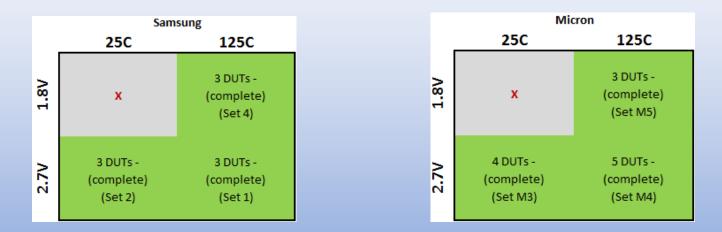
- Built adapter to connect to custom test system
- Will be used to perform:
 - Cell retention time studies with several patterns
 - Enable testing in thermal chambers up to 9 DIMMs at a time

To be presented by Steven M. Guertin at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 11-13, 2012, 1 NASA GSFC, Greenbelt, MD.

Interoperability

• Loose parts:

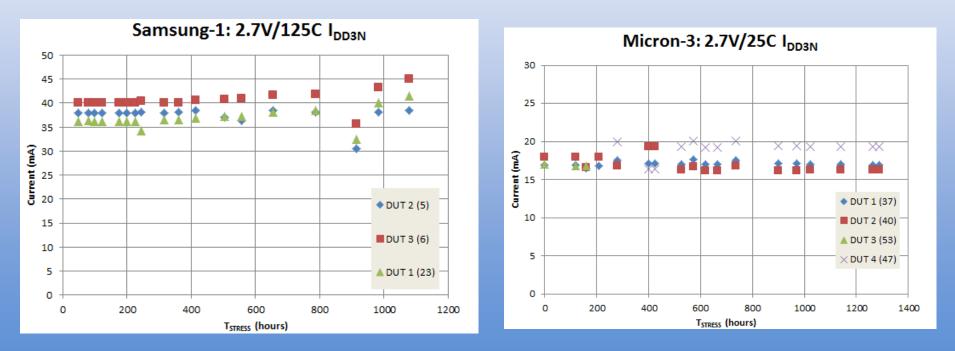
Can work on all systems with use of DIMM adapter –



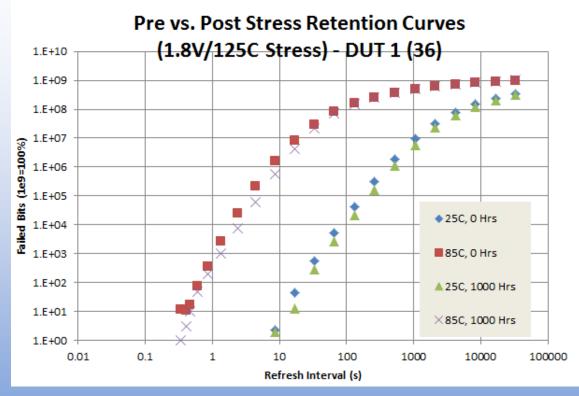
- DIMMs:
 - Can only be used on industrial tester (Eureka) and JPL memory functional tester

Last Year's Testing

• Test Matrix: 78nm 2Gb DDR2 devices

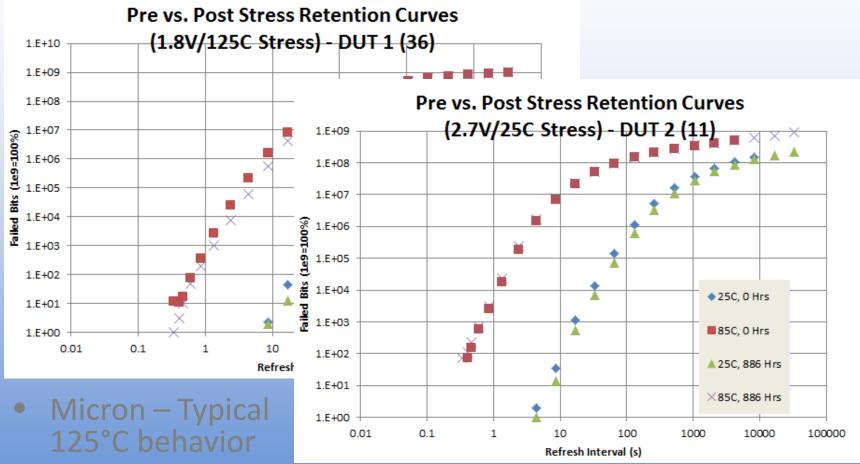


- Testing at 2.7V hindered by internal regulation
- Micron devices at 2.7V had 3 failures, but the statistics are low


Minor Device Degradation

- Observed operational currents did not degrade significantly over 1000 hours at 2.7V and/or 125°C
- Abrupt jumps due to difficulty with 2.7V Operation

Test Efforts



- Micron Typical 125°C behavior
- Limited imprinting was apparent in Micron devices rtin at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 11-13, 2012, NASA GSFC, Greenbelt, MD.

25°C Measurement has thermal uncertainty (Explains change at 25°C)

Test Efforts

 Limited imprinting Samsung – Typical was apparent in Pre/Post Stress – No apparent change Mice be presented by Stever M. Guertin at the 3rd NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 11-13, 2012,

NASA GSFC, Greenbelt, MD.

Summary of Results

- Performed 1000 hour testing at 1.8 and 2.7 V as well as 25 and 125°C
- Acceleration showed no significant changes until device failure
 - Failures are a significant result, but they are not hinted at by precursor degradation
- Failure likely due to out-of-spec operation
- Device characterization somewhat limited
 - Made us reexamine the test approach
- Examination for mechanisms limited
 - Device expected degradation modes unknown
 - Intractable matrix for examining mechanisms
- Limited ability to factor out test conditions

Future Directions

- Widen scope of target devices
 - Continue efforts to identify potential DDR2 devices
 - Migrate to DDR3 soon
- Increase test capabilities
 - Development of operating codes and protocols for equipment
 - Credence
 - Eureka
 - Functional tester
- Increase cross-NEPP support
 - New DIMM-based and loose-die based form factors will be more flexible to synergize with GSFC efforts

Conclusion - I

- Qualification approach seeks to provide useful data for NASA programs
 - NASA-Specific and Program-Specific acceptance testing
 - Develop understanding of device family to identify outliers
 - Perform limited life testing
- Reliability test matrix is too big
 - DDR devices are essentially complex ICs with many subcomponents
 - Building additional capabilities to support more testing
 - Test plans must be based on sampling and key measurements
- DUT options and interchangeability
 - Building fully interchangeable system for testing loose devices
 - Making test systems support DIMMs as well

Conclusion - II

- Test hardware development
 - Functional test system to support many DIMMs at once
 - Parametric testing of loose devices with Credence coming online
 - Incorporating industrial acceptance test hardware for DIMMs
- Test efforts
 - Last year's 78nm parts highlighted need for more characterization
 - Testing targeted static pattern at 125C/2.7V
 - Device failures are indicative of useful test, but difficult interpretation
- Future efforts will continue to improve testing capability
 - Perform characterization testing on recently acquired DIMMs
 - Parametrics, data pattern impact on cell retention, etc.

To be presented by Steven M. Guertin at the NEPP EDDR2 arts and Part ainform FETW an Electronic Technology Workshop June 11-13, 2012, 23 6/12/2012

References

- Micron 2Gb DDR2 data sheet
- Mosis tech_cmos_rel FAQ "Reliability in CMOS IC Design: Physical Failure Mechanisms and their Modeling"
- Wikipedia DDR4 entry
- Jin Et. Al. "Prediction of Data Retention Time Distribution of DRAM by Physics-Based Statistical Simulation" – shows potential mechanism for our response is traps under the gate.

National Aeronautics and Space Administration ditional Resources

- <u>http://www.sciencedirect.com/science/article/pii</u> /S0026271402000306
- <u>http://trs-</u> new.jpl.nasa.gov/dspace/handle/2014/20169
- <u>http://ieeexplore.ieee.org/Xplore/login.jsp?url=h</u> <u>ttp%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F85</u> <u>20%2F26927%2F01197774.pdf%3Farnumber%3D</u> <u>1197774&authDecision=-203</u>
- <u>http://www.quickstartmicro.com/Sample%20Slid</u>
 <u>es%20Quick%20Start%20IC%20Reliability.pdf</u>