

NEPP Electronic Technology Workshop June 11-13, 2012

Radiation Qualification of Flash Memories

T.R. Oldham Dell Services Federal Government and K.A. LaBel NASA Goddard Space Flight Center

Outline

Introduction/Background

- Flash Technology
- Test Modes
- Error Correction
- Single Level Cell/Multi-Level Cell
- Total Ionizing Dose (TID)
- Heavy Ion SEE
- Proton Testing
- Combined Effects (Radiation/Reliability)
- Conclusions

Floating Gate Transistor

- Write (Program) operation—Fowler-Nordheim (FN) injection of electrons into FG
- Erase operation—FN injection of electrons from FG to substrate
- Repeated P/E operations cause damage to tunnel oxide
- High voltage charge pumps are critical to Program and Erase operations, usually the first thing to fail

Flash Architectures

Flash Advantages

- Low cost per bit
- Low Power
- Nonvolatile
- Attractive for space applications for the same reasons widely used in hand held, battery powered, consumer electronics
- Radiation response is variable, as one would expect for unhardened commercial technology, but often pretty good

Operating/Test Modes

- Typically have dozens of test modes, can only test a few
- Static mode, unbiased
- Static mode, biased
- Dynamic Read
- Dynamic Read/Write
- Dynamic Read/Erase/Write
- New! ONFI (Open NAND Flash Interface) enables high throughput (133 Mbytes/sec)

Error Correction

- Most NAND flash does <u>NOT</u> meet its performance or reliability specs without ECC
- Since ECC is critical to the system, it should be part of the test
- Most SLC NAND has about 3% redundant memory for ECC; e. g. 8G NAND has pages 4Kx8, or 32 Kbits, with an additional 128 bytes (1024 bits) for ECC
- Simple Hamming code for a memory segment of 2^N bits requires N+1 bits for SEC (single error correction), or N+2 bits for SEC-DED (SEC-double error detection)
- Redundant memory is sufficient to hold SEC or SEC-DED Hamming code to correct one bit of every 512 bits

SLC/MLC

- Single Level Cell NAND is typically specified as having 10⁵ P/E cycle endurance, and 10 year retention
- Multi-Level Cell NAND typically has 5000 P/E cycle endurance with 10 year retention
- MLC requires more robust error correction, because initial voltage margins are smaller
- New products being introduced by the industry are overwhelmingly MLC

TID Testing

- In accordance with MIL-STD-TM 1019.8, using Co-60 γ-source, nominal V_{DD} + 10%, at room temperature
- DOD Test Guideline document recommends five parts, minimum—we prefer five in Read Only mode and five more fully exercised at each dose level
- TID response of unhardened commercial NAND flash memories varies widely among manufacturers and among technology nodes for a given manufacturer, but the best results are very good
- NAND flash sometimes survives TID exposure past 100 krad (SiO₂)—good enough for most NASA missions
- NOR flash is much more sensitive than NAND flash

Heavy Ion SEE Testing

- In accordance with ASTM F1192
- Try to get data with at least four ions (different LETs), and check for angular effects
- Use all test modes: Static, with and without bias; Dynamic Read; Dynamic R/W; Dynamic R/E/W
- Control logic errors (SEFIs) more important than single bit upsets
- Functional failures usually associated with high voltage Write and Erase operations, usually due to charge pump failures

Control Logic Errors

ERRCnt	DATA	EXP	BIE	BLOCK	PAGE	COL									
1	2	0	1	2509	13	907	1								
2	2	0	1	2509	13	925		ERRCnt	DATA	EXP	BIE	BLOCK	PAGE	COL	
3	32	0	1	2538	37	1245									
4	1	0	1	2540	58	1328		110	186	170	1	107	20	860	
5	16	0	1	2541	8	779		111	171	170	1	110	31	785	
6	32	0	1	2542	39	1208		112	171	170	1	116	63	1603	6
7	128	0	1	2543	36	1234	2	113	171	170	1	116	63	1619	
8	128	0	1	2543	36	1252		114	171	170	1	116	63	1621	
9	2	0	1	2577	47	952		115	171	170	1	116	63	1639	
10	16	0	1	2586	20	718		116	171	170	1	116	63	1657	
11	32	0	1	2587	57	1783	3	117	171	170	1	124	26	586	
12	32	0	1	2587	57	1801		118	171	170	1	124	35	454	
13	32	0	1	2602	0	1155		128	171	170	1	206	15	904	
17	4	0	1	2658	24	1773		129	234	170	1	218	57	435	
18	4	0	1	2674	26	1767		130	234	170	1	234	55	1160	7
19	64	0	1	2697	45	318		131	234	170	1	234	55	1162	
20	16	0	1	2711	20	1386	4	132	234	170	1	234	55	1178	
21	16	0	1	2711	20	1404		133	234	170	1	234	55	1180	
22	32	0	1	2714	29	1226		134	234	170	1	234	55	1196	
23	32	0	1	2714	29	1244		135	234	170	1	234	55	1198	
24	8	0	1	2728	33	771	5								
25	8	0	1	2728	33	789									

- Groups of two or more closely spaced errors, where each word has the same bit in error—ECC would see these as uncorrectable errors
- Transient noise in the Read circuit is causing erroneous Reads—these addresses will be correct the next time they are Read

SEE Lessons Learned

- Want to keep exposure low enough to avoid collective (multiple ion) effects, but high enough for good statistics—trade offs to make effective use of beam time
- Important to estimate event rates in space: flux at LET>60 is less than one ion/cm² per 100 years, flux in an accelerator can be 15 orders of magnitude higher
- High current events are sometimes caused by multiple ion interactions—not necessarily SEE
- Flash memories have bit error rates many orders of magnitude better than standard volatile memories, because of nonvolatile feature

SEE Lessons Learned (2)

- Acceptable SEFI rates and functional failure rates depend on the particular system
- Mitigation strategies are also unique to the system
- Frequently, the SEFI rate and failure rate in space is low enough that the program decides to accept the risk

Proton Testing

- Guideline is to do proton test if threshold LET for SEE is <15 MeV/mg/cm², which is true for all unhardened commercial flash
- The one proton test done on unhardened commercial flash produced no single ion effects, only TID damage
- Need for proton testing is unclear

Radiation/Reliability Combined Effects

- Endurance and retention after radiation exposure has been tested, and retention failures have been observed
- The number of retention errors is small enough that existing ECC can easily correct them, in SLC memories
- MLC memories may be more sensitive
- So far, no combined effects test is necessary for part qualification

Conclusions

- Flash memory offers performance advantages over some other technologies
- Unhardened commercial technology has variable radiation response, and always requires testing
- Best results obtained in testing commercial flash are very good—it is possible to use them in space
- More and more, flight programs are seriously considering flash memory for some applications