Rad Effects in Newly Available MOSFETS

Leif Scheick

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Ca

This Research Was Carried Out In Part by the Jet Propulsion Laboratory, California Institute of Technology, Under Contract With the National Aeronautics and Space Administration Under the NASA Electronic Parts and Packaging Program (Code AE). Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

More important for higher-
voltage devicesIon trackEven hardened powerGate O

- Even hardened power MOSFETs are susceptible to SEGR
- SEGR from two effects:

Caused by ion strike

•

- Gate oxide breakdown
 - Ion damage and charging in gate
 - Increase in electric field in oxide due to epitaxial field collapse from charge collection
- Dependent on ion angle
- Failure is high gate leakage
- SEB from activation of parasitic bipolar transistor under source contact
 - Temperature dependent
 - Current limitable
 - Failure is high drain-to-source leakage

SEE in High-Voltage Power MOSFETs

- Testing always occurs in situ
- Essentially testing is force a voltage and read a current
- Prompt spike in current signifies a SEE effect
 - Careful distinction must be made from TID effects
 - Small events may not effect parameters

Candidate Devices

Rating (V)	Device	Man.	Availability		
-100	2SJ1A03	Fuji	Q1FY12		
-200	2SJ1A09	Fuji	Q1FY12		
600	NSD1A01	Fuji	Q2FY12		
60	2N7616	Semicoa	Q2FY12		
30	2N7478	Semicoa	Q2FY12		
-100	2N7425	Semicoa	Q3FY12		
-60	2N7626	Semicoa	Q3FY12		

Test Methodology

- Used the NEPP guideline: The Test Guideline for Single Event Gate Rupture (SEGR) of Power MOSFETs [JPL Publication 08-10 2/08]
- Two variances
 - Post irradiation tests performed at full rate gate and 80% of rated drain
 - Fast Track Assurance Testing

Testing challenges – PIGS test limitations

 Full reverse gate bias and full drain bias results in some device exhibiting high leakage condition. This prevent full stress test, so it must be done piece-meal.

Fast Track Testing

Standard Method

- Test three devices for SEE Vds at each desired Vgs
 - Parts that survive used in post test FA
 - Do for each test condition, i.e., ionenergy, circuit etc.
- Requires 3 times the desired number of Vgs
 - 15 for 0, ± 5, ± 10, ± 15, ±20 V

Fast Track Method

- First part: test to failure at lowest magnitude Vgs (usually 0 V)
- Second part: verify first part pass level and test to failure with next highest magnitude Vgs (usually ±5V)
- Next parts: repeat until highest magnitude Vgs level is reached
- Last two parts: verify pass levels of all Vgs
 - If any fail, re-verify with lower pass level at said Vgs (need new part)
- Pros and cons:
 - Pro: can assure in half of the number (7 for 5 Vgs values)
 - Fewer parts for passing parts
 - Con: lose part failure data
 - Con: part-to-part variation will increase number of parts used

Fast Track Testing

Fast Track Method

Standard Method

(ideal run)

Vgs1	Vgs2	Vgs2	Vgs3	Vgs4	Vgs1	Vgs2	Vgs2	Vgs3	Vgs4
SEE DUT:	SEE SEE SEE SEE SEE DUT: DUT: DUT: DUT:	SEE DUT:	SEE DUT: 1	SEE DUT: 2	SEE DUT: 3	SEE DUT: 4	SEE DUT: 5		
1	4	7	10	13	Verify	Verify	Verify	Verify	
SEE	SEE	SEE	SEE SEE	Pass* DUT: 2	Pass DUT: 3	Pass DUT: 4	Pass DUT: 5		
2	5	8	11	. 14	Verify Pass	Verify Pass	Verify Pass	Verify Pass	Verify Pass
SEE	SEE	SEE	SEE	SEE	DUT: 6				
DUT: 3	DUT: 6	DUT: 9	DUT: 12	DUT: 15	Verify Pass	Verify Pass	Verify Pass	Verify Pass	Verify Pass
					DUT: 7				

*Test at highest pass voltage

New Parts Have New Challenges

- Parts are supplied to be drop-in replacements to other (read competitor) parts
- Same part number has same slash sheet
- Testing conditions for radiation will not necessarily yield same results
 - Slash sheet stops being a standardized reference for production
- Case in point is the Semicoa 2N7616
 - Comparable to the IR 2N7616

2N7616 – Krypton SEE

- Au380, Kr300, and Xe355 are "slash sheet values" based on BNL data on IR's version
- The other energies are estimates of worst case based on epitaxial thickness and Titus-Wheatley estimators
- Krypton data for both are commensurate

As the atomic number increases the deviation between the worst case and the slash sheet value increases

- Especially pronounced for gold
- Slash sheet for alternates to IR version is not, therefore, an adequate assurance asset across multiple suppliers
- Titus-Wheatley not good predictor for some architectures

2N7616 – Titus Curve with Gold

- Varying ion energy shows the worst case for SEE is well away from the slash sheet for this product
- Slash sheet would a underestimate risk sin using this part
- Ion ranges in um shown in point labels

Fuji 100 V – BNL/TAM comparison

 Testing with two comparable ions from TAM and BNL on 100 V p-channel devices. The SEE effects are commensurate.

 Testing with two comparable ions from TAM and BNL on 200 V p-channel devices. The SEE effects are commensurate.

Fuji 100 and 200 p-chan

Fuji 200 p-chan

Fuji 600 V N-chan

Acknowledgement

- We would like to thank Fuji corporation and Semicoa corporation for providing test samples and technical information
- We would also like to acknowledge Jean Marie Lauenstein and Megan Casey of the Goddard Space Flight Center for many useful discussions on device testing and effects

Conclusion

- Power device technologies still suffer from growing pains in regards to radiation effects
 - Higher rated parts may be limited by radiation effects
 - Derating (Design margin) on the SOA is the most used approach
- Lesson learned
 - New applications yield uncovered effects
 - All radiation issue should be revisited after new design
 - Or new environment, technology, or mission profile