

GaN HEMT Reliability at the Device Level: A HiREV (High Reliability Electronics Virtual Center) Assessment

June 2012 – NASA NEPP Workshop

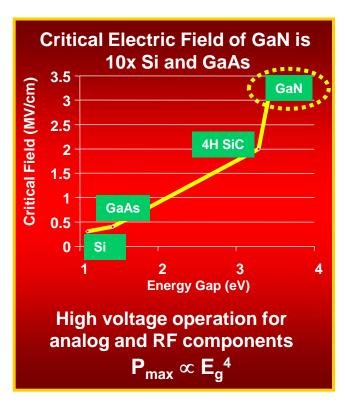
Eric Heller Physicist Materials and Manufacturing Directorate

Air Force Research Laboratory

DISTRIBUTION A. Approved for public release; distribution unlimited

- Background
- Why use GaN HEMTs?
- Survey of "Pathologies" (open lit. basis)
- How are "pathologies" accelerated (open lit.)
- Gaps and Solutions
- Paths Forward
- Conclusions
- For this discussion:
 - Open literature only!
 - Radiation effects out of scope.
 - Package level reliability out of scope
 - NOT a final product with industry buy-in

- DoD has been part of the ongoing national GaN development and maturation effort (~\$800M) – materials, device, circuit to subsystems
- Lifetime and lifetime assessment are key to successful transition
- DoD has been and is now analyzing data from national efforts and performing supplementary tests
- GaN HEMTs are the focus of a large percentage of HiREV's reliability science activity

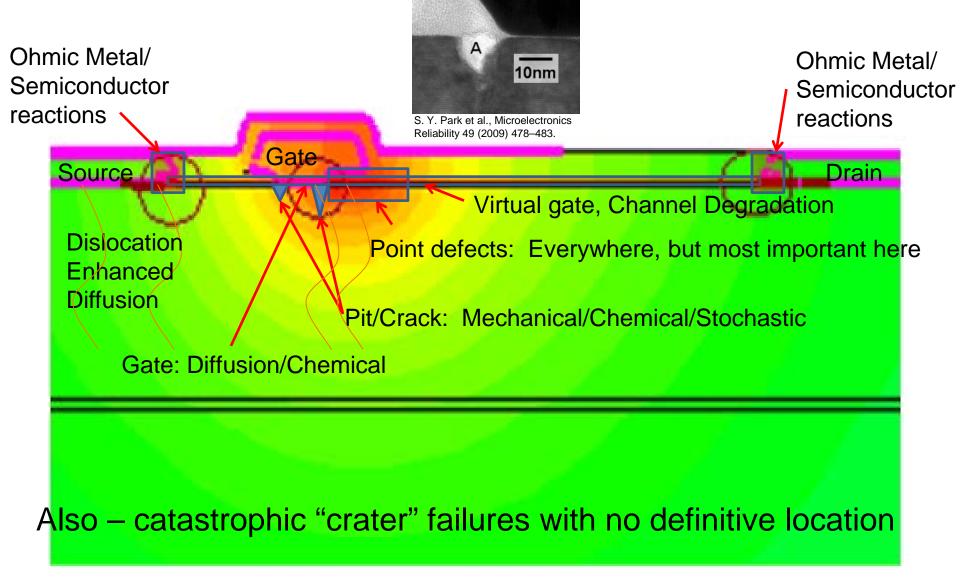


Why GaN HEMTs?

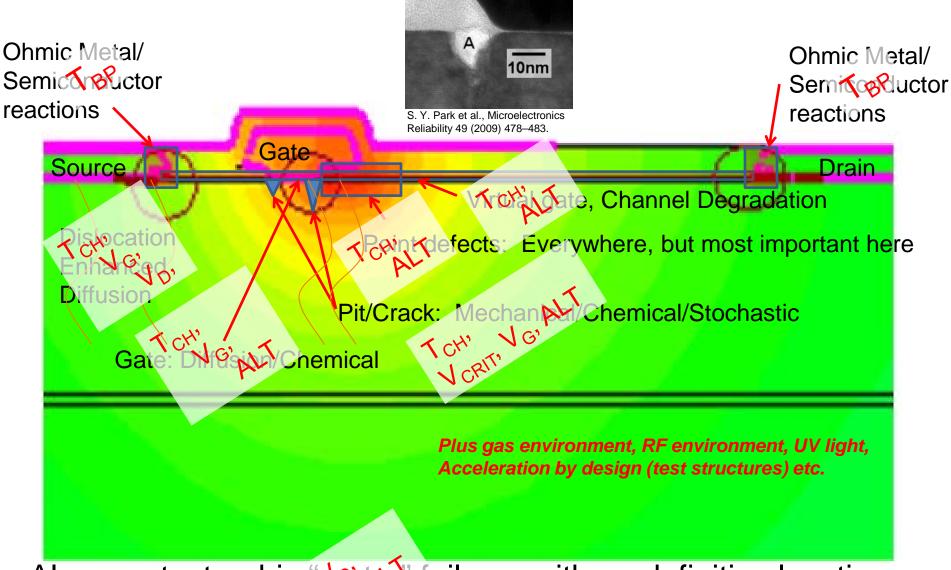

4

The Next Generation of MMICs

Benefit of GaN HEMTs


Dramatically higher...

- Output power
- Efficiency
- Bandwidth

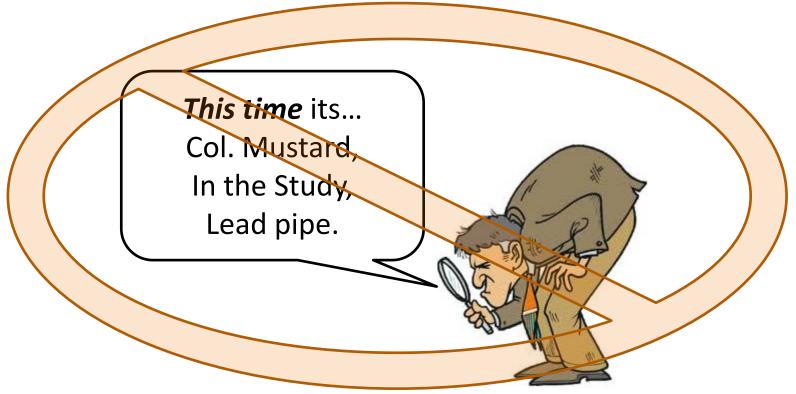


Survey of "Pathologies"

Survey of Accelerants

Also – catastrophic

Survey of Open Literature


Physics of Failure	Stressor	Failure Metric	Conclusions Drawn
 Diffusion 	•DC Electrical (I _D , V _D ,	•DC	•T _{CH} : Negative Ea
•Defect Percolation	V _G , V _{crit} , "semi-on")	Electrical/param	•Low Ea (0.12-0.39)
•TDDB at Gate	•DC pulsed	etric	•Mid Ea
•Surface barrier	●RF	•RF electrical	•Mult. Ea's one part
oxidation	•RF pulsed	 Model Guided 	•V _{crit} = V _D - V _G
•Ohmic/Gate	•T _{BP} or T _{CH}	 Transients 	•V _G
intermixing	•Pulsed T	•DLTS or I-DLTS	 Hot electrons
•Critical elastic E	•UV light	•Other	
 Cracking/pitting 	 Ambient gas 	(PE/Thermal	 Recoverable/not
•Traps*	•Ambient RF	IR/noise/Raman/	•Gradual/quick
•Alloying, melting	 Use of proxy parts 	SEM or AFM	•Ambient
 Dislocations 	 Starting conditions/ 	image judgment)	Dominated
•SBH change	Processing marginality		•DC-RF similar/not
•Interface Relax.			 Unknown
•TDDB			
 Unknown 			

* Multi-dimensional space in Physics of Fill, Type, Location, Physics of Fail

- Well defined Physics of Failure, Stressor(s), Fail Metric(s) (like Si CMOS)
 - \rightarrow Well defined "path" to follow for reliable conclusions

0%

-10%

-20%

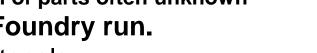
-30%

40%

0

DSS^{/1}DSS

-50% -60%


Process details, origin of parts often unknown

\rightarrow HiREV University Foundry run.

- Large variation in test protocols
 - R_{th}: IR thermal, micro-Raman, modeling
 - Uneven treatment of burn-in
 - Each data source explores a *subset* of stressor par space.
 - Adequacy of existing test channels?

\rightarrow HiREV role as independent tester facilitating uniform testing

→HiREV working fundamental science and tool assessment

A. Sozza et al., Microelectronics Reliability 45 (2005) 1617–1621

HTO T_=204°C

HTO T_=232°C HTO T_=260°C

3000

2000

Time (hours)

1000

Large variation in degradation rate of nominally "identical" parts.

Why are we not there?

- Cuts across industry.
- A "fog" that clouds reliability testing results.

\rightarrow Rapidly getting better!

- Much larger variation for parts across fabs
 - Rapid tech advancement, "old" parts
 - Secrecy/Proprietary limits sharing Limited distributions of new parts

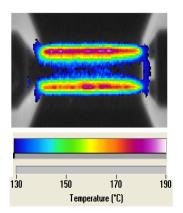
- Complex materials system.
 - Coupled mechanical/thermal/electrical physics.
 - Very large peak E fields, temperatures, thermal gradients.
 - Complex interplays cited in literature (i. e. drifting charged point traps).
 - Lag between experiment and modeling.
 - → Bigger effects drive need for more accuracy (i. e. $R_{TH} + E_a$)!
 - \rightarrow Fully coupled models (and awareness of complexity) is critical!
 - \rightarrow HiREV has both in-house and funded efforts in these areas.
- Traps, traps, traps
 - Nearly impossible to directly measure, yet a genuine issue.
 - Easy to cite, hard to quantify: density, location(s), species, conditions.
 - Wide bandgap: means traps have microseconds to many days lifetime.
 - Confusion: Creation, depassivation, and/or just filling?
 - \rightarrow This will require closure. Verification/Validation Critical.

On Open Exploration vs. Guideline Driven

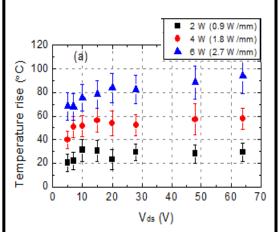
Good things happen when Universities ignore guidelines!

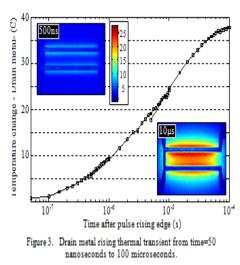
- Lots of good stuff in the open lit. not captured by specs like JEP 118.
 - Non thermal accelerants
 - Hot electrons, Critical biases, Traps and defect percolation
 - Full and time dependent role of dislocations (not going away)
 - Piezoelectricity (and Inverse PZ) will need to be addressed
 - Clouds reliability testing results

\rightarrow Need consistent application of these novel tests to relevant and modern parts for multiple vendors!

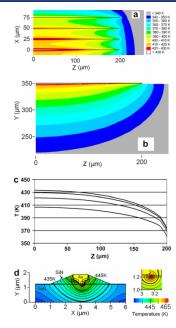

Bad things happen when Universities ignore guidelines!

- Hard to find papers on some topics (ESD, > 1 vendor).
- Time duration for parts on test not usually long enough
- Under-focus on consistency and enough data to <u>fully</u> replicate work Need better documentation, critical data being discarded! Need to standardize tests when possible Statistics important, outliers too.
- \rightarrow Need to address these gaps to get work from there to here!
- \rightarrow Journals practices are moving in our direction


Example: HiREV Thermal Characterization


IR Thermography

- Quick look at heating uniformity
- Good for part-part variation
- Not good for absolute
- temperatures
- •~3-5 μm spatial resolution

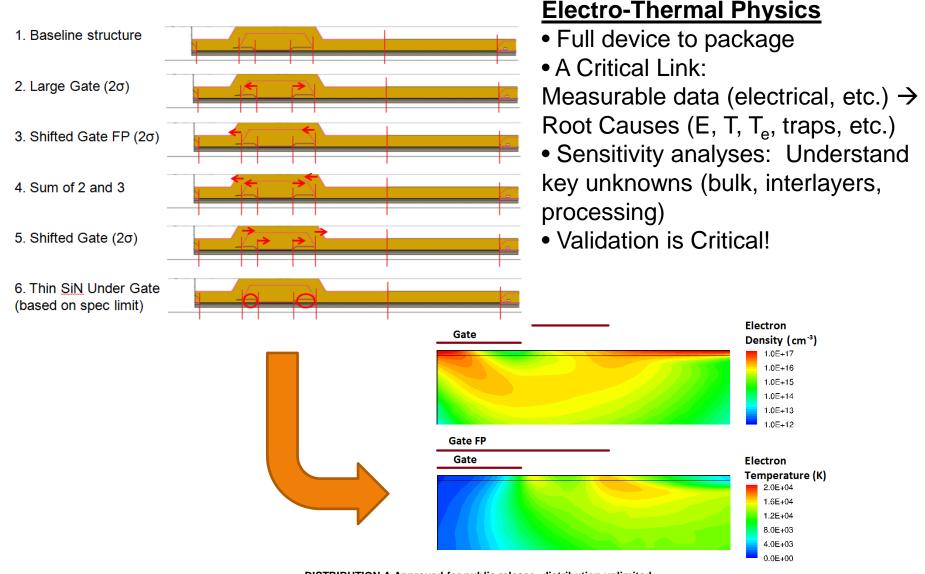

<u>µRaman</u>

- Accurate point
 thermometry
- 1 μm spatial resolution
- Mapping possible
- Measures GaN or SiC temperature only; optical access limitations

Thermoreflectance

- Transient measurement with 50ns resolution
- Submicron spatial resolution
- Full device imaging
- Surface localized

Electro-Thermal Modeling


- Thermal Transients
- Best spatial resolution
- Full device to package
- Buried not an issue
- Only as good as
- input data \rightarrow lots of

12

Example: HiREV GaN HEMT Modeling

Conclusions

- Many GaN HEMT reliability concerns are expressed in the open literature.
 - But, with "Fog" in Data, Test Methodology, Conclusions.
 - Uncertain how much is worrisome.
 - Not appropriate either to ignore or to follow every lead!
- Gaps can largely be binned
 - -Sample limited or institutional (old, proprietary parts)
 - -Quality/completeness of reporting
 - -Key gaps in science
- HiREV working to fill some key gaps in science

 Example: Understanding Thermals
 Example: Electro-Thermal Modeling
- Many thanks to the HiREV team for thoughts/feedback/guidance!

Supplemental past this point

Approach

Synthesis of published/publishable (non-proprietary) knowledge streams

- Past several years' MURI reviews
- Literature surveys
- HiREV team discussions
- Personal experience: 6 yrs. Phys. based modeling, FA of GaN HEMTs

"What we know" applied to some key questions

1. Test protocols: Variation seen in open literature & expected impact

"Your mileage may vary!"

- 2. Deltas: AlGaN/GaN vs. AlGaAs/GaAs
- 3. R_{th}: Key & under-appreciated issues
 - IR thermal, micro-Raman, modeling
 - Bias dependence (DC operating regime), DC vs. RF
- 4. Survey of device stressors in open literature (by design or accidental)

- T_{BP} , T_{CH} , I_{D} , time, V_{D} , V_{G} , $V_{CRIT}=V_{D}-V_{G}$, RF power

About 80 open literature sources, 2007 or newer

• By Physics of Failure:

Diffusion, Defect percolation, TDDB at gate, Surface barrier oxidation, melting, Ohmic metal intermixing, voiding, Critical Elastic Energy, Cracking, pitting, *trap creation/depassivation and/or filling* + *gate/SiN/barrier/channel and/or deep epi* + *static charge/mobility degradation/transient charge/hopping conduction*, SBH change, interface relaxation, Gate metal intermixing, dislocation density – static charges, traps, highway for impurities.

• By Stressor (accelerant):

DC Electrical (I_D , V_D , V_G , $V_{CRIT} = V_D - V_G$, "semi-on"), DC pulsed, RF, RF pulsed, UV light, use of proxy parts (many...), T_{BP} , T_{CH} , gas ambient, RF ambient, impurity starting conditions, T cycling, and combinations of these!

Continued...

• By Failure Metric:

DC Electrical parametric (I_{DSS} , I_{DMAX} , V_{knee} , many...), RF power drop, RF PAE drop, Model guided conclusions, Electroluminescence, Thermal IR, Current Transient, DLTS, I-DLTS, Noise Spectral Density, micro-Raman, SEM, TEM, plan view AFM/SEM image judgment.

• By Conclusion(s) Drawn:

Negative E_a , low (0.12, 0.26, 0.39 eV) E_a , mid E_a , high E_a (2.5 eV) more than one E_a seen on the same part (fn of T), T_{CH} critical for E_a but is a fn(X, Y, Z, Time), non-thermal (V_{CRIT} , V_G , hot electrons) stresses and "ambients" important or dominant, 10⁶ variation in lifetime in nominally identical parts in one case, load plane shrinks as T increases, parts sometimes "recover", some fail gradually and some quickly, DC and RF stress not the same, or maybe they are?