Back to Hogwarts
Preventing and Creating Surprise in Hardware Cyber at DARPA MTO

Kerry Bernstein, Program Manager
DARPA MTO

Briefing prepared for NEPP

12 June 2013
Harry Potter’s wand and Lord Voldemort’s wand are both made of Elder Wood.
• Motivation for Hardware Authentication
• Assessing Complexity For Security
• Program Overviews
• Emerging Issues in Hardware Cyber
Common Suppliers of Laptop Components

- Liquid Crystal Display
 - China, Czech Republic, Japan, Poland, Singapore, Slovak Republic, South Korea, Taiwan
- Memory
 - China, Israel, Italy, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, United States
- Processor
 - Canada, China, Costa Rica, Ireland, Israel, Malaysia, Singapore, United States, Vietnam
- Motherboard
 - Taiwan
- Hard Disk Drive
 - China, Ireland, Japan, Malaysia, Philippines, Singapore, Thailand, United States

Source: GAO Report GAO-12-361
Electronics logistics is global

Semi Design
Semi Manufacturing & Packaging
Printed Circuit Board Production
Printed Circuit Board Distribution

Source: IDC Manufacturing Insights & Booz Allen analysis
Semiconductor Design & Manufacture Flow: Potential Points of Vulnerability

Current tools/techniques do not provide broad security assurance

Source: Kevin Kemp, Freescale
Exemplary Threat Taxonomy

Local/ Network Malicious Code
- Trojan
- Virus/Worm

Local/ Network Exploits (exploiting bugs)
- Data-directed attacks
- Buggy code/firmware

Physical Platform
- Physical/ Software side/ covert channels
- Conducted and radiated emissions (TEMPEST)
- Malicious functionality insertions
- Materials / reliability integrity compromise
- Flaws in design/ implementation
- Broken ciphers/ cryptographic algorithms
- Counterfeit hardware, Supply Chain Interception
- Anti-Tamper Circumvention

Operations
- Untrusted operator or end user
- Trusted end user/ operator with inadvertent action
- Process or operation failure
- Configuration errors
Threat Space: Side-Channel Attacks are Algorithmic

Logical and Physical Extraction of Mobile Data

decryption
gps
deleted
images
mobile

Inspector SCA
Detailed control in your testing process

Inspector Side Channel Analysis

http://www.riscure.com/tools/inspector/inspector-sca

More info?

http://pwnieexpress.com
Towards Hardware Trojan: Problem analysis and Trojan Simulation

Song Yun, Qingbao Li, Hongbo Gao, Zhang Ping
Department of Computer Science and Technology
Zhengzhou Institute of Information Science and Technology
Zhengzhou, China
sy_19840325@126.com

Abstract—Similar to the software viruses, hardware Trojan can also do harm to electronic systems. Specially, in military and defense-related systems, hardware security problem is an important aspect in these applications. In this paper, we analyze characteristics of hardware Trojans and implement three hardware Trojans on our hardware Trojan simulation platform in order to demonstrate how vulnerable the hardware is and provide experimental environment for hardware Trojan checking tools.

Keywords—hardware Trojan; Trojan simulation; hardware security detection

I. INTRODUCTION

Due to high economic cost of fabrication, device foundries have been moving their fabrication technology to low-cost locations, or going completely cheap and outsource fabrication to other foundries. These developments suggest that hardware is designed and fabricated in comparatively less trusted environments. Thus, the problem of hardware Trojan has emerged and become an increasing concern. A hardware Trojan (hardware Trojan horse (HTH) or malicious worm) is a malicious modification of the normal characteristics of hardware Trojan. Section 4 illustrates the frame of our hardware Trojan simulation platform. And we implement three hardware Trojans in Section 5. Conclusions are drawn in Section 6.
1. Cybersecurity is often thought of as a software or network problem. We know better.

2. VLSI Process is the convolution of 4 processes: Deposition, Removal, Patterning, Implanting. All 4 are vulnerable to intentional compromise. It's as true for FPGAs as it is for full custom.

3. We've provided the *illusion* of scaling for years now. The infusion of technology band-aids for this illusion supports yet more evil in all semiconductors – Customs, ASICs, as well as FPGAs.

4. Custom IP on board modern FPGAs are provided by 3rd party vendors, and are as vulnerable to exploit as custom ICs.

5. Design Complexity provides opportunity for intrusion. Custom processors, ASICs or FPGAs are all MOSFETS + Interconnects.

6. No coincidence that exploits may be commonly asserted with same processes, materials and design tools as those used in conventional process card and failure analysis.
• Motivation for Hardware Authentication
• Assessing Complexity For Security
• Program Overviews
• Emerging Issues in Hardware Cyber
Varieties of Potentially Vulnerable Computing Components

- **FPGAs**
- **ASICs**
- **Custom Designs**
- **Sensors**
- **Memory Arrays**
- **Microcontrollers**
- **Resistors**
- **Capacitors**
- **Inductors**

Image Sources: Wikimedia Commons top (l-r) User:Dake, User:Yaca2671, center (l-r) User:MSRDatenlogger, Konstantin Lanzet, bottom (l-r) User:J anke, Alex Khimich, Audrius Meskauskas

Distribution Statement A, Approved for Unlimited Distribution.
Pollack’s Rule *

• Pollack observed an empirical sqrt relationship between design complexity (i.e. chip area, or number of devices) and performance
• But Analytic treatment of complexity needs a more quantitative model

(BTW – **Pollack anticipated our need to go multicore**: improving thru-put as sqrt(C) was clearly a losing proposition for Uniprocessors !!!)
12s0 PLL reference system, includes logic, clock freq detection, charge pump, BG, current mirrors, dividers, V2I, multiple high current reg. stages, comparators. Approximately 1K FETS and other components. **450 um x 240um (1.08E5 um^2)**.

DAC in 10LP. Approx 1K resistors, **1K FETS** in the main section, 100 FETs + caps on the right, logic on the left. **800um x 350um (2.80E5 um^2)**.

Same component count, similar areas - different complexity
After Jackson Mayo, Sandia National Laboratory
Outline

1. Motivation for Hardware Authentication
2. First – Assessing Complexity For Security
3. Program Overview
4. Emerging Issues in Hardware Cyber
* FPGAs dropped in IRIS Phase II to be treated entirely separately.
Vision: ICs Used in Weapons Systems Must Perform as Designed – No More, No Less

ASIC (Application-Specific Integrated Circuit) vulnerabilities

Golden Design

Top Level Specifications and design data + Top level IP model

Design to be built or programmed on an FPGA

SMIC* Fab I Facility

Unknown IP

Unknown ASIC

Unknown Bitstream

FPGA (Field Programmable Gate Array) vulnerabilities

- No current solutions exist today that can analyze an advanced IC in less than 6 months – requires substantial capital investment
- The TRUST program addresses this critical and growing problem for the DOD in 4 thrusts
 - Trust in fabrication for ASICs
 - Trust in design for ASICs
 - Trust in FPGAs
 - Trust in third-party intellectual property (3PIP)
- DARPA has been working with transition partners throughout Phase III
IRIS Program: Integrity and Reliability of Integrated Circuits

Extract functionality and predict reliability of military ICs

COTS or GOTS Integrated Circuit
(unknown architecture, incomplete specifications)

Apply functionality and reliability analysis tools

Use non-destructive imaging techniques

Capability Objectives

- Derive 95% of the functionality of ICs utilized in military systems
- Verify the reliability of commercial ICs acquired for military systems

Goals

- Develop tools capable of determining the functionality of ICs in cases where the complete IC spec is not known or available
- Develop techniques for reliability testing using small sample sizes / reduced test time
- Validate these methodologies on current design topologies:
 - Digital and Analog/Mixed-Signal ASIC circuits
 - Field Programmable Gate Arrays (FPGA)
 - Third Party Intellectual Property Cores

*Analog/Mixed-Signal
Reverse Engineering (RE) Observations

1. RE techniques scale *inversely* with technologies: As device count grows, analysis area shrinks

2. There’s a *strong non-linear component* to scaling impact:
 a. Non-destructive reverse engineering (“far-field observation”, w/ conventional optics, sensors) resolution already inadequate; incapable of supporting future scale
 b. Study at required scales (i.e < 10 nm) requires at least partial destructive RE.
 - Backside silicon removal
 - Front-side delayering

3. Frequency Scaling introduces additional obfuscation

4. New Materials (i.e. HfO2) require additional techniques

5. **Hierarchical assertion** to steer advanced RE tooling is *essential* going forward as device counts continue to climb
3D RECONSTRUCTION OF DAC - NON DESTRUCTIVE

Non-destructive sensing enables 3D visualization and spatial analysis.

Distribution Statement A, Approved for Unlimited Distribution
NON-DESTRUCTIVE SENSING

LAYERS EXTRACTION ON DAC

HIGH RESOLUTION IN DEPTH ENABLES LAYER SEPARATION AND MEASUREMENT OF THICKNESS WITHOUT GRINDING
• Motivation for Hardware Authentication
• Assessing Complexity For Security
• Program Overviews
• Emerging Issues in Hardware Cyber
Chain of Custody and precision logistics are insufficient to track a global supply chain, and hierarchical program development. Advanced Supply Chain technologies will provide important new insights beyond simple authentication:

- Present location
- Age
- Fab, lot, wafer of origin
- Operating condition, current opcodes
- Emanating? TEMPESTed?
- Removed and Replaced?
- Chain of custody
- Temperature extremes seen
- AT Sensor activated?
- Autonomic or remotely invoked Self-destruct

Future SCRM Technologies include

- PUFs
- Strained glass
- Botanical DNA
- RFID or Bluetooth Tags
- Ring Oscillators
- Memory Bias
- Isotope tags
- IDD