Status of the Wide Bandgap Working Group – Gallium Nitride

Leif Scheick
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Ca

Copyright 2015 California Institute of Technology. U.S. Government sponsorship acknowledged. This research was carried out in part by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration under the NASA Electronic Parts and Packaging Program (Code AE). Other data was collected from NASA flight projects.
Current activities

• Working group discusses best methods for evaluating new wide band gap technologies for infusion into space
 – GRC, JPL, JSC, GSFC, AFRL
 – Monthly meeting to share data and resources for radiation effects testing and reliability analyses

• Previous efforts have been broad stroke testing
 – Heavy ion testing
 • Gallium Nitride HEMTs (JPL)
 • Silicon Carbide MOSFETs (JPL)
 – Reliability screening
 • Temperature cycling of GaN and SiC

• On going and future efforts
 – Continues radiation testing and analysis
 – Reliability test screens for new devices
 – Guidelines for implementation and testing
Previous body of knowledge on GaN

- Current silicon power solutions are at their innate limits for space applications
 - Silicon devices are at efficiency limit
 - Best hi-rel devices are less than ~400 V drain-to-source
- GaN devices are becoming available
 - Reliability effects are a concern
 - Gate stress is limited (abs max of Vgs +6, -5 V)
 - Integrated devices increase robustness (GaNSystems)
 - Thermal effects and aging are under study at GRC
Status of Radiation Effects in GaN
Previous body of knowledge on GaN

- SEE in GaN have been observed
- Used the NEPP guideline: The Test Guideline for Single Event Gate Rupture (SEGR) of Power MOSFETs [JPL Publication 08-10 2/08]
 - No post irradiation stress tests between
 - Testing at angle required

To be presented at the 5th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 23-26, 2014, NASA GSFC, Greenbelt, MD.
Previous body of knowledge on GaN

![Graphs showing VSee vs. Vgs and VSee vs. Cr for Xe @ 25 MeV/amu with data points for different wafer lots labeled as LDC1_EPC1, LDC2_EPC1, etc.]

Average VSee for Several Lots of GaN HEMTs
- EPC1 is EPC1012
- EPC2 is EPC2012

To be presented at the 5th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 23-26, 2014, NASA GSFC, Greenbelt, MD.
Current investigations

- Gate to source interaction
 - Looking at shorting the gate to source
 - Parameterization of test circuits
 - Establishment of SEE operating area

- Angular Effects
 - Devices are lateral, and some effects have been seen

- Testing of emerging parts
 - GaNSystems
 - Fujitsu
 - Northup Grumman
GATE TO SOURCE
INTERACTION
EPC with SMU holding VGS=0 V

- This is a typical response – SEE occurred at 60 V
- SMU establish virtual ground
EPC with Gate Shorted to Source

- Gate current is high due to the sense line test
- No SEE until 200 V
- Irrelevant to space flight
Investigation of SET on gate

- The real time evolution of an SEE shows gate and drain transients
- Gate surges positive, then follows the drain in negative current
 - Possible coupling to the power supply
- Parameterization of test circuit (LRC etc) is next step

![Graph showing SEE of EPC1012 with Vds=200 V, Vgs=0 V, showing Drain Current and Gate Current over time.](image)
TESTING OF GANSYSTEMS PARTS
SEE in 100 V GS61008

- Irradiation with Ag at LBL
- Leakage increase
- One SEE out of eight devices below 100 V
- Confirmation at TAM
- Variety of failure modes
TID Results – GS61008

- HDR with 2 hr anneal
- No change in subthreshold behavior

To be presented at the 5th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 23-26, 2014, NASA GSFC, Greenbelt, MD.
Conclusion

- **Gate to source interaction**
 - Gate shorted to source fails at 180 V
 - Gate and source at virtual ground fail at 60 V
 - Parametrization of test setup next step

- **Testing of GaNSystems parts**
 - Ion increases the drain leakage
 - Low cross-section for SEE (less than 10^{-7} cm2)
 - TID looks good but more susceptible than EPC

- **Future plans**
 - Measurement of LRC circuit in testers
 - Development of an SOA
 - High voltage issues are becoming more visible
 - Continual search for GaN IGFET
Status of Reliability Effects in GaN
Reliability Assessment of Wide Bandgap Power Devices

Kristen Boomer, NASA GRC
Leif Scheick, JPL
Jean-Marie Lauenstein & Megan Casey, NASA GSFC
Ahmad Hammoud, Vantage Partners LLC

NEPP 6th Electronics Technology Workshop
NASA Goddard Space Flight Center
June 23 – 26, 2015
Scope of Work

• A NEPP collaborative effort among NASA Centers to address reliability of new COTS wide bandgap power devices

Approach

• Identify, acquire, and evaluate performance of emerging GaN (Gallium Nitride) & SiC (Silicon Carbide) power devices under the exposure to radiation, thermal cycling, and power cycling
• Document results and disseminate findings

Presentation

• Radiation & thermal cycling effects on GaN power FETs
• Wear-out board for dynamic power/thermal cycling
Radiation & Thermal Cycling Effects on GaN Power FETs

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part #</th>
<th>Parameters</th>
<th># Samples</th>
<th>Radiation</th>
<th>Cycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC</td>
<td>2012</td>
<td>200V, 3A, 100mΩ</td>
<td>15/26</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GaN Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GS61008P</td>
<td>100V, 90A, 7.4mΩ</td>
<td>11/10</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>GS66508P</td>
<td>650V, 30A, 52mΩ</td>
<td>4/0</td>
<td>Planned</td>
<td>✓</td>
</tr>
</tbody>
</table>

Radiation Exposure

<table>
<thead>
<tr>
<th>Device</th>
<th>Ion</th>
<th>Energy (MeV)</th>
<th>LET</th>
<th>Range (μm)</th>
<th>Dose (rads)</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC</td>
<td>Xe</td>
<td>1569</td>
<td>40</td>
<td>124.5</td>
<td>8719.6</td>
<td>TAMU</td>
</tr>
<tr>
<td>GaN Systems</td>
<td>Ag</td>
<td>1569</td>
<td>41</td>
<td>121</td>
<td>6634</td>
<td>LBL</td>
</tr>
</tbody>
</table>

Thermal Cycling:

- 120 cycles (Ongoing)
- Rate: 10 °C/min
- Range: -55 °C to +125 °C
- Soak time: 10 min
Parameters Investigated:

- I-V Output Characteristics
- Gate Threshold Voltage, V_{TH}
- Drain-Source On-Resistance, $R_{DS(on)}$
- Drain Leakage Current, I_{DSS}
- Gate Leakage current, I_{GSS}
EPC2012 Enhancement Mode Power FET

<table>
<thead>
<tr>
<th>EPC2012</th>
<th>Pre-cycling</th>
<th>Post-cycling</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cont</td>
<td>Irrad</td>
<td>Cont</td>
</tr>
<tr>
<td>$V_{TH} (V)$</td>
<td>1.21</td>
<td>0.90</td>
<td>1.02</td>
</tr>
<tr>
<td>$I_{GSSF} (\mu A)$</td>
<td>0.69</td>
<td>0.84</td>
<td>0.71</td>
</tr>
<tr>
<td>$I_{GSSR} (n A)$</td>
<td>540</td>
<td>779</td>
<td>664</td>
</tr>
<tr>
<td>$I_{DSS} (\mu A)$</td>
<td>0.17</td>
<td>383</td>
<td>0.19</td>
</tr>
<tr>
<td>$R_{DS(on)}$ Normalized</td>
<td>1.0</td>
<td>1.33</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Graphs:
- Control
- Irradiated
- Post-cycling
GaN Systems Enhancement Mode Power FET

GS61008P

<table>
<thead>
<tr>
<th></th>
<th>Pre-cycling</th>
<th>Post-cycling</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cont</td>
<td>Irrad</td>
<td>Cont</td>
</tr>
<tr>
<td>V_{TH} (V)</td>
<td>1.21</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>I_{GSSF} (µA)</td>
<td>58.8</td>
<td>35.9</td>
<td>35</td>
</tr>
<tr>
<td>I_{GSSR} (nA)</td>
<td>1.54</td>
<td>1.41</td>
<td>1.21</td>
</tr>
<tr>
<td>I_{DSS} (µA)</td>
<td>1.40</td>
<td>1.24</td>
<td>4.94</td>
</tr>
<tr>
<td>$R_{DS(on)}$ Normalized</td>
<td>1.0</td>
<td>1.33</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Remarks
- Control & irradiated parts remained functional after exposure to radiation & thermal cycling.
- Slight reduction in threshold voltage & modest increase in drain-source resistance with radiation; 1 device had significant increase in leakage current.
- Insignificant effects of cycling on properties.
- Part-to-part variation in output characteristics.
- No alteration in device packaging or terminations.

Graphs

Control

- V_{GS} = 2.0V
- Current (I) vs. V_{DS}

Irradiated

- V_{GS} = 2.0V
- Current (I) vs. V_{DS}

Post-cycling

- V_{GS} = 2.0V
- Current (I) vs. V_{DS}
GaN Systems Enhancement Mode Power FET

<table>
<thead>
<tr>
<th>GS66508P</th>
<th>Pre-cycling</th>
<th>Post-cycling</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>V_{TH} (V)</td>
<td>1.59</td>
<td>1.41</td>
<td>• Parts remained functional after exposure to thermal cycling with no significant changes in properties</td>
</tr>
<tr>
<td>I_{GSSF} (µA)</td>
<td>471.5</td>
<td>465.7</td>
<td>• Part-to-part variation in output characteristics</td>
</tr>
<tr>
<td>I_{GSSR} (nA)</td>
<td>0.41</td>
<td>0.33</td>
<td>• No alteration in device packaging or terminations</td>
</tr>
<tr>
<td>I_{DSS} (µA)</td>
<td>6.37</td>
<td>5.53</td>
<td></td>
</tr>
<tr>
<td>$R_{DS(on)}$ Normalized</td>
<td>1.0</td>
<td>1.08</td>
<td></td>
</tr>
</tbody>
</table>

Graphs:
- Pre-cycling
- Post-cycling

<table>
<thead>
<tr>
<th>V_{GS} = 2.5V</th>
<th>I_{D} (A)</th>
<th>V_{DS} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4V</td>
<td>0.00</td>
<td>1.8V</td>
</tr>
<tr>
<td>2.3V</td>
<td>1.9V</td>
<td>2.0V</td>
</tr>
<tr>
<td>2.2V</td>
<td>2.1V</td>
<td>2.3V</td>
</tr>
<tr>
<td>2.1V</td>
<td>2.4V</td>
<td>2.0V</td>
</tr>
</tbody>
</table>

Graphs:
- Pre-cycling
- Post-cycling

<table>
<thead>
<tr>
<th>V_{GS} = 2.5V</th>
<th>I_{D} (A)</th>
<th>V_{DS} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4V</td>
<td>0.00</td>
<td>1.8V</td>
</tr>
<tr>
<td>2.3V</td>
<td>1.9V</td>
<td>2.0V</td>
</tr>
<tr>
<td>2.2V</td>
<td>2.1V</td>
<td>2.3V</td>
</tr>
<tr>
<td>2.1V</td>
<td>2.4V</td>
<td>2.0V</td>
</tr>
</tbody>
</table>

Graphs:
- Pre-cycling
- Post-cycling
Wear-out board for dynamic power/thermal cycling
Planned Work

- Continue multi-stress tests on control and irradiated GaN & SiC power devices
- Power Cycling
 - Static (Gate DC voltage)
 - Dynamic (Gate AC voltage)

ACKNOWLEDGMENT

This collaborative work was performed in support of the NASA Electronic Parts and Packaging Program. Guidance and funding provided by the Program’s co-managers Michael Sampson and Kenneth LaBel are greatly appreciated. Part of this work was done at the NASA Glenn Research Center under GESS-3 Contract # NNC12BA01B.