

NEPP Roadmaps, COTS, and Small Missions

Kenneth A. LaBel ken.label@nasa.gov 301-286-9936 Michael J. Sampson michael.j.sampson@nasa.gov 301-614-6233

Co- Managers, NEPP Program NASA/GSFC

http://nepp.nasa.gov

Acknowledgment:

This work was sponsored by: NASA Office of Safety & Mission Assurance

Sundown at SCRIPPS Proton Therapy Center, Ken LaBel

Outline

- NEPP Frame of Reference
- NEPP Tasks and Technology Selection
 - NEPP Technology Criteria
 - Selective Task "Roadmaps" including COTS
 - A Few Other Cool Tasks
- NEPP and Small Missions/Alternate "Assurance" Approaches
- Beyond Today
- Summary

Acronyms

Acronym	Definition					
3D	Three Dimensional					
ACF	Absolute Contacting Encoder					
ADAS	Advanced Driver Assistance Systems					
	Analog to Digital Converter					
AEC	Automotivo Electronics Council					
AFS	Automotive Electronics Council					
AE	Air Force					
	Air Force					
	Air Force Research Laboratory					
	Ari Force Research Laboratory					
	ARM Holdings Public Limited Company					
Avalanche STT	Akivi nolulligs Public Limited Company					
Avaianche 511	Marcani Electronic Systems (MES) and British Aprospace					
BAE Systems	(RAe) merged to form RAE Systems					
BGA	Ball Grid Array					
BOK	Padu of Knowlodge					
	Controller Area Network					
	Controller Area Network					
CBRAIN	Column Cold Arrow					
CUA	Courin Grid Afray					
CMOS	Complementary Metal Oxide Semiconductor					
CN	Xilinx ceramic flip-chip (CF and CN) packages are ceramic					
	column grid array (CCGA) packages					
CN/Kyocera	CN Package assembled at Kyocera					
Corp.	Corporation					
COTS	Commercial Off The Shelf					
CRC	Cyclic Redundancy Check					
CU	Control Unit					
Cu	Cu alloy					
DDR	Double Data Rate (DDR3 = Generation 3; DDR4 = Generation 4)					
DMA	Direct Memory Access					
DoD	Department of Defense					
DSP	Digital Signal Processing					
dSPI	Dynamic Signal Processing Instrument					
DTRA	Defense Threat Reduction Agency					
Dual Ch.	Dual Channel					
ECC	Error-Correcting Code					
EEE	Electrical. Electronic. and Electromechanical					
FMAC	Fauipment Monitor And Control					
EMIB	Multi-die Interconnect Bridge					
ESA	Furopean Space Agency					
eTimers	Event Timers					
FCCU	Fluidized Catalytic Cracking Unit					
FeRAM	Ferroelectric Bandom Access Memory					
FinFET	Fin Field Effect Transistor (the conducting channel is					
	wrapped by a thin silicon "fin")					
EPGA	Field Programmable Gate Array					
EPII	Floating Point Unit					
EV	Fiscal Vear					
GaN	Gallium Nitride					
	Danaconic GaN GIT Eng Prototype Sample					
GANGII	Fanasonic Gail GIT Eng Prototype Sample					

Acronym	Definition				
Gb	Gigabyte				
GIC	Global Industry Classification				
GPU	Graphics Processing Unit				
GSFC	Goddard Space Flight Center				
GSN	Goal Structured Notation				
GTH/GTY	Transceiver Type				
HALT	Highly Accelerated Life Test				
HAST	Highly Accelerated Stress Test				
нвм	High Bandwidth Memory				
HDIO	High Density Digital Input/Output				
HDR	High-Dynamic-Range				
нмс	Hybrid Memory Cube				
HP Labs	Hewlett-Packard Laboratories				
HPIO	High Performance Input/Output				
HPS	High Pressure Sodium				
1/0	input/output				
12C	Inter-Integrated Circuit				
i2MOS	Microsemi second generation of Rad-Hard MOSFET				
IBM/GF	International Business Machines/Global Foundaries				
IC	Integrated Circuit				
IP	Intellectual Property				
IPFG	Joint Photographic Experts Group				
KB	Kilobyte				
LinFlex	Local Interconnect Network Elexible				
L-mem	Long-Memory				
I P	low Power				
	I ow-Voltage Differential Signaling				
	Lightwatt High Pressure Sodium				
M/I BIST	Memory/Logic Built-In Self-Test				
MBSE	Model-Based Systems Engineering				
Mil/Aero	Military/Aerospace				
MIPI	Mohile Industry Processor Interface				
ммс	MultiMediaCard				
MMU	Memory Management Unit				
MOSEETs	Metal-Oxide-Semiconductor Field-Effect Transistors				
MPEE	Multiport Front-End				
MPII	Microprocessor Unit				
MRAM	Magnetic Random Access Memory				
ΝΔSΔ	National Aeronautics and Space Administration				
Navy Crane	Naval Surface Warfare Center, Crane, Indiana				
NEPP	NASA Electronic Parts and Packaging				
NGSP	Next Generation Space Processor				
NOR	Not OR logic gate				
NRI	Naval Research Laboratory				
NRO	Inited States Naw National Reconnaissance Office				
DRCA	Diactic Pall Grid Array				
	Flastic Dali Grid Affdy Drinted Circuit Reard				
PCD DCIe	Printed Circuit Board				
	Peripheral Component Interconnect Express				
	Phase Locked Loop				
РОР	Раскаде оп Раскаде				

Acronym	Definition			
РРАР	Production Part Approval Process			
Proc.	Processing			
PS-GTR	High Speed Bus Interface			
QFN	Quad Flat Pack No Lead			
QSPI	Serial Quad Input/Output			
R&D	Research and Development			
R&M	Reliability and Maintainability			
ReRAM	Resistive Random Access Memory			
RGB	Red, Green, and Blue			
RH	Radiation Hardened			
SAR	Successive-Approximation-Register			
SATA	Serial Advanced Technology Attachment			
scu	Secondary Control Unit			
SD	Secure Digital			
SD/eMMC	Secure Digital embedded MultiMediaCard			
SD-HC	Secure Digital High Capacity			
SDIO	Secure Digital Input/Output			
SDM	Spatial-Division-Multiplexing			
SEE	Single Event Effect			
SERDES	Serializer/Deserializer			
Si	Silicon			
SiC	Silicon Carbide			
SK Hynix	SK Hynix Semiconductor Company			
SLU	Saint Louis University			
ѕмс	Air Force Space and Missile Systems Center			
SOA	Safe Operating Area			
soc	Systems on a Chip			
SPI	Serial Peripheral Interface			
STT	Avalanche Technology Spin Transfer Torque			
STT	Spin Transfer Torque			
TBD	To Be Determined			
тсм	Trellis Code Modulation			
Temp	Temperature			
THD+N	Total Harmonic Distortion Plus Noise			
T-Sensor	Temperature-Sensor			
тѕмс	Taiwan Semiconductor Manufacturing Company			
UART	Universal Asynchronous Receiver/Transmitter			
USB	Universal Serial Bus			
VNAND	Vertical NAND			
WBG	Wide Band Gap			
WDT	Watchdog Timer			
WSTS	World Semiconductor Trade Statistics			

NEPP - Frame of Reference

- EEE (electrical, electronic, and electromechanical) parts are:
 - All the things that are on printed circuit boards (PCB) inside of electronics boxes.
- This includes:
 - Integrated Circuits (ICs or chips) like processors and memories as well as passives such as capacitors and resistors,
 - Hybrid devices or multi-chip modules: Small packages that house multiple chips internally that are placed on the PCB, and,
 - Connectors and wires used to send electrical or power signals between boards, boxes, or systems.
- This does not include:
 - The PCB NASA Workmanship Program responsibility.

PCB from Mars Rover Image courtesy NASA

Image courtesy BAE Systems

Image courtesy NASA

Motivational Factors

2015 Global Semiconductor Market: \$335 Billion

Source: WSTS End Use Report, 2015 Note: Military is <1% and is included in Industrial/Gov't

Aerospace is a small percentage of this amount.

In 1975, Military and Aerospace market share was ~\$50%! Conclusion: Mil/Aero community has to leverage. There's no business model to go it alone!

Technology Selection Criteria for NEPP Investigations

- The technologies should satisfy all or most of the following criteria:
 - Wide applicability,
 - Product level or in productization, and,
 - No distinction: COTS to high-reliability aerospace.
- In general, we avoid:
 - Laboratory technologies, e.g., <TRL3,
 - Limited application devices with certain exceptions (critical application or NASA center specialization).
- Note: Partnering arrangements with other organizations preferred.
 - Industry examples: Microsemi, Xilinx, Altera (Intel), TI
 - Other U.S. Government: AF SMC, AFRL, DTRA, Navy Crane, NRO, NRL, etc...

NEPP – Deeper Dive for Tasks

- NEPP has multiple rationale for evaluating a specific device or technology:
 - If the device/technology has the potential for widespread usage across the Agency,
 - If the device has true enabling characteristics for next generation mission needs, or,
 - As a means of gathering assurance information for future mission insertion or screening/qualification methods.

• The following roadmap charts are focused on the advanced power and digital electronics regimes.

- NEPP has efforts not being presented on connectors, capacitors, and other categories.
 - Ex. Cu wirebonds is an active future area currently in discussion on tasks.

Technology Investigations: Sample Roadmaps Discussion

- Caveats:
 - Guidelines are often a product of technology evaluation tasks.
 - Only major product categories shown.
- Notes:
 - Separate CMOS roadmap not included.
 - NEPP leverages samples from ongoing DoD and/or commercial sources.
 - 1xnm is current target (IBM/GF, INTEL, Samsung, TSMC).
 - "Reliability testing" may include product and/or package testing.
 - "Body of Knowledge" BOK document provides a snapshot status on a technology (manufacturing, reliability, radiation) and identifies gaps for future work.
- Technology areas not on NEPP Roadmap, but under consideration include:
 - Electro-optics (fiber optics),
 - Advanced analog and mixed-signal devices,
 - Imaging sensors,
 - Modeling and simulation,
 - High-speed communication (SERDES, fast data switches), and,
 - Adjunct processors (eg., graphics, signal processing).

Gartner Hype Cycle Concept

Field Programmable Gate Arrays (FPGAs)

New "Space" FPGAs from the "Agencies"

Next Generation "FPGAs"?

From Xilinx.com

Quad-Core ARM Cortex-A53-Based Hard Processor System

From Altera.com

Advanced Processors

Commercial Memory Technology

- collaborative with Navy Crane

Alternate Grade Electronics: Automotive

- NEPP has three goals for automotive electronics efforts
 - Determine exactly what: "automotive grade" does or does not entail.
 - Includes understanding:
 - Automotive Electronics Council (AEC) documents, and,
 - Manufacturer Production Part Approval Process (PPAP).
 - Perform "snapshot" screening and testing on representative automotive grade electronics.
 - Explore application of resilient automotive electronics system designs for space purposes.

Automotive application constraints or standard compliance Noisy ground(s) voltage	To be impl	emented and n			
	Audio IP	SoC	Application firmware/ software	РСВ	
	Common mode rejection			Passive components' accuracy	http://www.design-reuse.com/ news_img/20141209_2.jpg
Audio perception and spatialization	THD+N, gain mismatch, Pop-up Noise	SoC routing resistance	Processing, starting and stopping sequences	Application Schematics consideration	
Security	Primary diagnostic circuitry	Redundant audio interface	audio diagnostic firmware	Protection circuitry	
High Temperature operation (AEC-Q100 Grade 0/1 qualification)	High performance at junction Temperature -40 °C to 125 °C	Package thermal dissipation consideration		PCB material and component soldering technology consideration	

Small Missions/ Automotive

Automotive -Advanced Driver Assistance Systems (ADAS) for Space?

S32V234 Block Diagram

From Freescale.com

Power and Wide Band Gap (WBG) Devices

Presented by Kenneth A. LaBel at the 2016 NEPP Electronics Technology Workshop (ETW), Goddard Space Flight Center, Greenbelt, Maryland, June 13–16, 2016.

IC Packaging

A Few Other Cool Tasks...

- CubeSat mission success/failure root cause analysis
 - Grant to Saint Louis University
- Using a model-based systems engineering (MBSE) approach to radiation assurance
 - Grant to Vanderbilt
 - Co-sponsored by NASA Reliability and Maintainability Program
 - Uses a tool called "Goal Structured Notation"
- Keeping the CRÈME website alive
 - Support to Vanderbilt
 - Just standard maintenance and operation, no upgrades
- Proton test facilities
 - See poster on 6/14.

Beyond Today – Sample Challenges

- Complexity and sub-microscopic feature size issues for inspection, screening, device preparation, and test
 - 2.5/3D Packages/ICs
 - Package on Package (PoP) Commercial Devices
 - FPGAs combined with an SOC
 - Cu Wirebonds
 - 14 nm and below feature sizes
 - ESD susceptibility
 - Trust
- Assurance
 - Automotive and catalog commercial EEE parts?
 - Increasing risk with a worldwide supplier base
 - Traceability
 - Change control
 - Screening?
 - Consolidation
 - What if the only source left is in an inhospitable or unauditable part of the world?

NEPP and Small Missions/ Alternate "Assurance" Approaches

• Sample Current Efforts

- Radiation Hardness Assurance for Small Missions
- Root Cause Analysis and Success Tracking of CubeSats (Prof. Michael Swartwout/SLU) – we're looking for possible low hanging fruit for university-class CubeSats
- Model-Based Missions Assurance for CubeSats:
 - 1st task is a Goal Structured Notation (GSN) exemplar of a CubeSat board this is joint with the NASA Reliability and Maintainability (R&M) Program
- Board-level proton test guideline
- Automotive grade EEE parts
- CubeSat parts database both kit manufacturers and usage within NASA
- Multiple COTS evaluation tasks relevant to CubeSat usage including microcontrollers, memories star trackers, power devices, and FPGAs...
- Future considerations
 - COTS, COTS, COTS (and alternate grade electronics)
 - Continue and extend R&M collaboration (Bayesian methods, anyone?)

21

- EEE Parts Best Practices for Small Missions

Summary and Comments

- NEPP Roadmaps and Tasks are constantly evolving as technology and products become available.
 - Like all technology roadmaps, NEPP's is limited to funding and resource availability.
 - Many other efforts are not being shown today (60+ tasks total)
 - Partnering is the key:
 - Government,
 - Industry, and,
 - University.

• We look forward to further opportunities to partner.

https://nepp.nasa.gov