

Radiation Hardness Assurance (RHA) for Small Missions

Michael J. Campola NASA GSFC Code 561

Acronyms

CREME	Cosmic Ray Effects on Micro-Electronics
DD	Displacement Damage
EEE	Electrical, Electronic andd Electromechanical
ELDRS	Enhanced Low Dose Rate Sensitive
ESA	European Space Agency
ETW	Electronics and Technology Workshop
FET	Field Effect Transistor
GSFC	Goddard Space Flight Center
JEDEC	Joint Electron Device Engineering Council
JPL	Jet Propulsion Laboratory
LET	Linear Energy Transfer
MOSFETs	Metal Oxide Semiconductor Field Effect Transistor
NASA	National Aeronautics and Space Administration
NEPP	NASA Electronics Parts and Packaging
NOVICE	Numerical Optimizations, Visualizations, and Integrations on CAD/CSG Edifices
PDR	Preliminary Design Review
REAG	Radiation Effects and Analysis Group
RHA	Radiation Hardness Assurance
RLAT	Radiation Lot Acceptance Testing
SEB	Single Event Burnout
SEE	Single Event Effects
SEFI	Single Event Functional Interrupt
SEGR	Single Event Gate Rupture
SEL	Single Event Latchup
SER	Single Event Rate
SET	Single Event Transient
SEU	Single Event Upset
TID	Total Ionizing Dose

Introduction

- o What are small missions? What goes into them?
- Implementing RHA gives unique challenges in small missions
 - » No longer able to employ risk avoidance
 - » Design trades impact radiation risks, cost, and schedule
 - » Difficult accounting for all risks to the system
- Useful risk practices
 - » Risk identification and comparison
 - » Categorizing risk based on manifestation at the system level
- Leveraging some RHA improvements

Definitions

Small Spacecraft

- Mass < 180kg (Small Spacecraft Technology Program)
- o Can be any class mission!
- Independent of cost, not talking about small budgets necessarily
- Mission goals for small spacecraft are growing as is the need for reliability

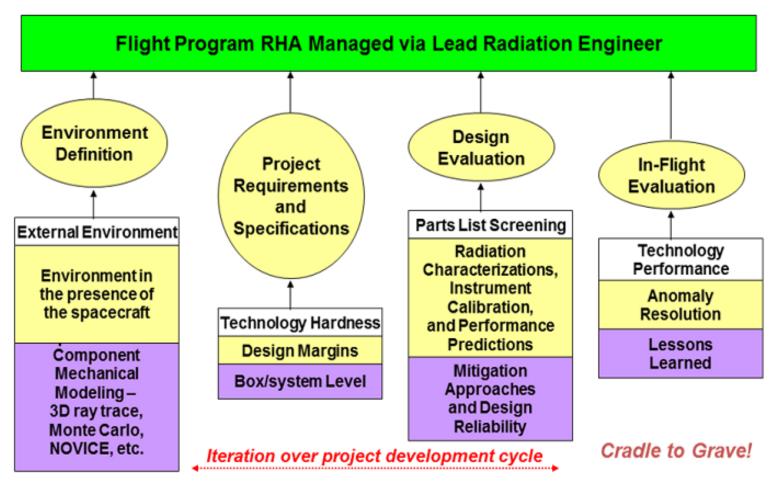
Radiation Hardness Assurance

RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications throughout exposure to the mission space environment

(After Poivey)

Small Spacecraft "Market Research"

NASA


CubeSat/SmallSat Subsystem Vendors (cubesat.org)

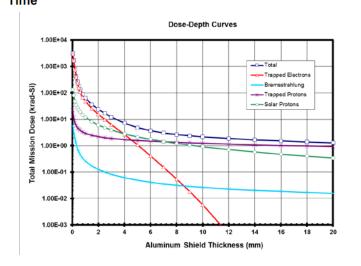
- Not going to help radiation concerns when trying to drive costs down, do not know your mission objectives
- Using COTS components in many sub-systems
- Small Spacecraft Partnerships
 - Universities
 - Government Institutions
 - Small Business Collaborations

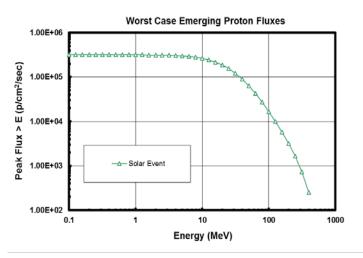
RHA Overview

(After LaBel)

Rational Approach

- 1. Hazard Analysis Define and Evaluate
- 2. Smart Requirements
- 3. Evaluate Design/Components
- 4. Engineering Decisions/Trades
- 5. Iterate Process


(After LaBel)


Hazard Analysis

SEE Time

- Define the Hazard
 - Same process for big or small missions, no short cuts
 - Know the contributions
 - » Trapped particles (p+,e-)
 - » Solar protons, cycle, events
 - » Galactic Cosmic Rays
 - Calculate a dose-depth curve
 - Transport flux and fluence of particles
- Evaluate the Hazard
 - A continuous process throughout the mission design life

Smart Requirements

Reliability Requirements

- System Requirements
- Subsystem functionality
- Flow down to modules/parts

Operational Requirements

- Technology Selection
- Part Selection
- Fault Tolerance
- Operating conditions

Performance Requirements

- Vulnerability
- Function
- Reliability

System → Sub-system → Parts

 Mission Trajectory and timing

Free-Field Environment Definition Specific to Box

Shielding

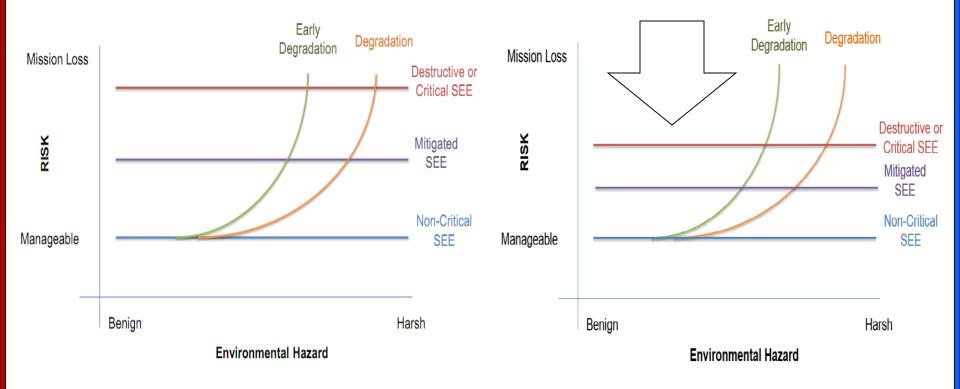
Specific to Device

Internal Environment Definition

Compliance, Iteration, Criteria for Success

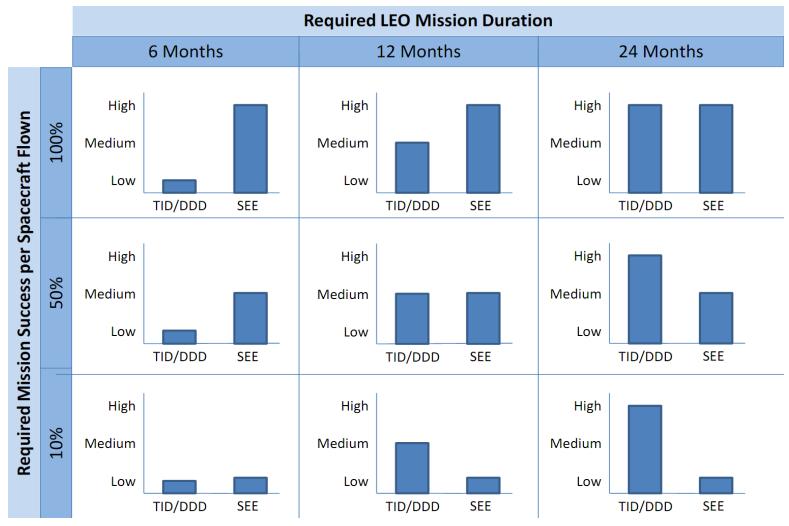
Evaluate Design/Components

- Look at each part's response, compare with part criticality
- Determine if error will manifest at a higher level
- Utilize applicable data and the physics of failure
- The "we can't test everything" notion
 - Requirements and risk impacts to the system should determine the order of operations when limited


Engineering Decisions/Trades

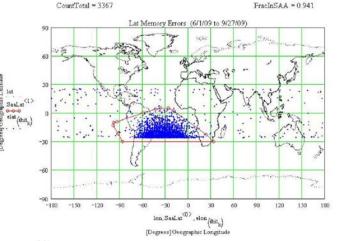
- Be conscious of design trades
 - Mission parameter changes impact the radiation hazard
 - Weigh the hazard and risk
 - SWaP trades need to be carefully considered
 - Parts replacement/mitigation is not necessarily the best
- Test where it solves problems and reduces system risk (risk buy down)
- Only when failure modes are understood can we take liberties to predict and extrapolate results

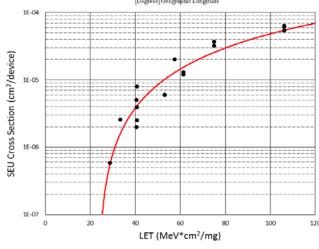
Single Strain vs. Allowable Losses

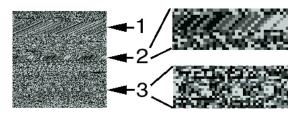


- Redundancy alone does not remove the threat
- Adds complexity to the design
- Diverse redundancy

Risk Buy Down by Radiation Testing






Risk Hierarchy

- Parts
 - Radiation response
 - Downstream/peripheral circuits
- Subsystem
 - o Criticality
 - Complexity
 - Interface
- System
 - Power and mission life
 - Availability
 - Data retention
 - Communication
 - Attitude determination

Risk Categorization

+	٩

1												
PIN	Generic·Part·No.¤	Part· Description¤	Package· Type¤	Manufacturer¤	FM·Part·No¤	Risk¤	SEL/· SEGR/· SEB¤	SEU℉	SET⁰a	SEFI¤	TID/ELDRS¤	DD∞¤
375¤	AT27C512R-90TI¤	EPROM∞	28·TSOP¤	ATMEL¤	AT27C512R-90TI¤	Medium¤	ޤ	T¤	Ąα	ޤ	T¤	Α¤
380∞	AT49BV1614T-11TI¤	Flash⋅Ram¤	48·TSOP∞	ATMEL∞	AT49BV1614T-11TI¤	Medium¤	T¤	T¤	Ąα	T¤	T¤	Α¤
500¤	BAT54¤	Schottky Barrier¤	SOT23¤	ZETEX¤	BAT54¤	Low¤	A¤	Ą¤	Ąα	N/A¤	A¤	A¤
510¤	BAT54C∞	Schottky- Barrier¤	SOT23¤	ZETEX¤	BAT54C∞	Low¤	A¤	Ą¤	Ą¤	N/A¤	Ą¤	A¤
505¤	BAT54S¤	Schottky- Barrier¤	SOT23¤	ZETEX:	BAT54S¤	Low¤	A¤	Α¤	Ąα	N/A¤	A¤	A¤
485¤	BAV170-(Pb·Free)¤	Double- diode¤	SOT23¤	Philips - Semiconductor	BAV170-(Pb·Free)¤	Low¤	A¤	A¤	Ąπ	N/A¤	A¤	Α¤
490∞	BAV23¤	Double diode¤	SOT143¤	Philips- Semiconductors	BAV23∞	Low¤	Ą¤	Ąπ	Α¤	N/A¤	A¤	Α¤
495¤	BAV99W¤	High-speed· double· diode¤	SOT323∞	Philips· Semiconductor¤	BAV99W¤	Low¤	Ą¤	A¤	Ąα	N/A¤	A¤	o A ¤
415¤	BC847BS∞	NPN-double- transistor¤	SC-88∞	Philips: Semiconductors	BC847BS∞	Medium¤	A¤	A¤	Ąα	N/A¤	T¤	a A¤
420¤	BCV61C·(Pb·Free)∞	NPN-double- transistor¤	SOT143B¤	Philips · Semiconductor¤	BCV61C·(Pb·Free)∞	Medium¤	A¤	Α¤	Ą¤	N/A¤	ޤ	A¤
425	BCV62C·(Pb·Free)∞	transistor¤	SOT143B¤	Philips · Semiconductor¤	BCV62C·(Pb·Free)∞	Medium¤	A¤	Ą¤	Ą¤	N/A¤	ޤ	Α¤
410∞	BFR92¤	Wideband∞	SOT23∞	Philips- Semiconductora	BFR92¤	Medium¤	A¤	Ą¤	Ą¤	N/A¤	T¤	A¤
430∞		PNP·double· transistor¤	SOT23∞	Philips· Semiconductor¤	BFT92∞	Medium¤	A¤	Ą¤	Α¤	N/A¤	T¤	Aα
385¤	CD74HC04M∞	Inverter∞	SO-14 ¹²²	Harris∞	CD74HC04M∞	Medium¤	A¤	Ą¤	Ąα	Ąα	T¤	Α¤
395∞	CXA1439M∞	CDS¤	SO-8¤	SONY¤	CXA1439M∞	High∞	Ţπ	ޤ	Ąα	Ąα	ޤ	Α¤
405¤	CXD1261AR¤	Timing· Pulse· Generator¤	QFP-64¤	SONY¤	CXD1261AR¤	High∞	Τ¤	Τ¤	Α¤	Ą¤	T¤	o A ¤
400¤		Clock-Drivers	SO-20¤	SONY¤	CXD1267AN∞	High¤	Τ¤	T¤	Aπ	Aπ	T¤	A¤ ¤
315¤		CPU¤	388- PBGA¤	AMD∞	ElanSC520-100Al¤	High≖	Tπ	ޤ	Αn	Τ¤	Ţα	Α¤
4650	F-102¤	Current- regulator- diode¤	TBD¤	Sicovend¤	F-102¤	Low¤	A¤	A¤	A¤	N/A¤	A¤	a A¤
4450		FET¤	SSOT-6¤	Fairchild¤	FDC6506P∞	High¤	Τ¤	Aπ	Α¤	N/A∞ N/A∞	Τ¤	An D
	HY57V651620BLTC- 10S¤	SDRAM∞	TSOPII¤	Hyundai∞	HY57V651620BLTC- 10S¤	High≖	Τ¤	ŢΩ	Α¤	T¤	ޤ	A¤ o

RHA Improvements

- Confidence levels vs. Radiation Design Margins
 - Trapped models AE8/AP8 to AE9/AP9
 - Solar particles already handled this way
- Statistics on datasets
 - o Careful analysis can bound response from different test sets and results
 - Ground based testing more sophisticated
- Requirements are getting more specific
 - By function or expected response (power, digital, analog, memory)
 - By semiconductor or fab (GaN, GaAs, SiGe, Si, 3D stacks, hybrids)

Summary

- Varied mission life and complexity is growing for small spacecraft
- Small missions benefit from detailed hazard definition and evaluation as done in the past
- Requirements need to not overburden
 - Flow from the system down to the parts level
 - Aid system level radiation tolerance
- RHA is highlighted with increasing COTS usage

michael.j.campola@nasa.gov

THANK YOU