Heavy-Ion Testing of the Freescale/NXP Qorivva 32-bit Automotive-Grade MCU

Ted Wilcox¹, Christina Seidleck¹, Megan Casey², Ken LaBel² ¹AS&D, ²NASA-GSFC

Acronyms

- ADC Analog to Digital Converter
- COTS Commercial Off The Shelf
- CPU Central Processing Unit
- DMA Direct Memory Access
- DRESET Destructive Reset
- DSPI Deserial Serial Peripheral Interface
- ECC Error Correcting Code
- EDAC Error Detection and Correction
- eDMA Enhanced Direct Memory Access
- GPIO General Purpose Input Output
- HW Hardware
- ISR Interrupt Service Routine
- JTAG Joint Test Action Group
- LBNL Lawrence Berkeley National Laboratory
- LET Linear Energy Transfer

- LQFP Low Profile Quad Flat Pack
- MCU Microcontroller Unit
- POR Power on Reset
- RTC Real Time Clock
- SECDED Single error correct, double error detect
- SEE Single Event Effects
- SEFI Single Event Functional Interrupt
- SEL Single Event Latchup
- SEU Single Event Upset
- SRAM Static Random Access Memory
- SW Software

Objective

- Evaluate single-event effect radiation response of inexpensive COTS automotive-grade parts, specifically a 32-bit microcontroller
 - Wider temperature range (-40°C to +125°C)
 - Guaranteed product longevity/availability
 - Built-in hw/sw safety features (ECC SRAM & Flash, Clock monitors, low-voltage detection, fault collection and reporting)
- Develop/improve internal SEE test flow for inexpensive automotivegrade microcontrollers (lessons learned?)
- Determine feasibility of test vehicle for low-cost, low-reliability apps (CubeSATs, etc) → low-power

Key Questions

- Does this device perform "well-enough" under heavy-ion irradiation to be recommended for ultra-low cost missions or instruments (CubeSATs and the like)?
 - Not *qualification*, but a starting-point for system design
 - It's going to upset, but what are the common error signatures?
- What results can we derive from heavy-ion testing using a commercially-available evaluation system for this microcontroller?
- What considerations do we need for testing (especially with limited time and money)?

Device Under Test

- Freescale MPC56xx Family
 - 32-bit Power Architecture MCU
 - Automotive/Industrial applications
 - Specific Part: **SPC5606B** (S prefix = "automotive-qualified")
 - 90nm Power Architecture e200z0 core
 - 1 MB ECC Flash memory
 - 80 KB ECC SRAM
 - 64 MHz Processor Core
 - 144 LQFP (plastic)
 - Temperature Range -40 to +125 C
 - Commercial Evaluation Board

Test Considerations

- Assume choice of automotive microcontroller driven largely by cost
 - Limits ability to test in application-specific manner (testing isn't cheap...)
- But, any microprocessor or microcontroller is a complex part...
- Large number of complex elements each capable of affecting radiation response
- How to identify error type?
 - Almost like testing SOC/board

Image source: http://www.nxp.com/products/microcontrollers-andprocessors/power-architecture-processors/mpc5xxx-5xxx-32-bitmcus

Complex device \rightarrow Complex test \rightarrow Complex data

Test Software Components

- **DSPI** (Deserial/Serial Peripheral Interface) loopback test of communications peripheral.
- **eDMA** (enhanced Direct Memory Access) Moves block of data in SRAM using software handshaking and interrupt-driven error-detection.
- Memory EDAC Uses internal EDAC module (SECDED) to report bit upsets in SRAM and flash memory, as well as bus access issues (flash stall/abort).
- Math Prime number testing to load-test arithmetic units
- ADC Interrupt-driven test of ADC peripheral reports if analog value departs expected range. Reports back number of successful conversions.
- **Software Watchdog** Serviced by Periodic Interval Timer (ISR). If service routine fails to reset watchdog (CPU is locked up or program execution stops) board is automatically reset. Software will report any resets.
- **Reset Generation Module** Board will be functionally reset by software if other test modules' counters fail to increment for some reason.
- Individual test programs to characterize **low-power sleep mode** performance and to focus on individual items from above list as necessary
- Additionally, there is built-in **low-voltage detection** for the 1.2V core supply that will reset the device. Any POR, whether intentional or due to low-voltage event, will be logged.

Radiation Test Conditions

- Testing at LBNL 88" Cyclotron
 - Ion Species Used: B, O, Ne, Si, Ar, Cu, Kr, Ag @ 10MeV/AMU tune
 - Nominal LET Range: 0.89 to 48.15 MeV*cm²/mg
 - Angular Testing up to 45 degrees (effective LET 68.09 MeV*cm²/mg)
 - Room temperature exposures in vacuum

BASE	Elon List : .									
lon	Cocktail	Energy	Ζ	Α	Chg.	% Nat.	LET 0°	LET 60°	Range	(Max)
	(AMeV)	(MeV)			State	Abund.	(MeV/m	ig/cm2)	(µm)	
В	10	108.01	5	11	+3	80.1	0.89	1.78	305.7	-
0	10	183.47	8	18	+5	0.2	2.19	4.38	226.4	
Ne	10	216.28	10	22	+6	9.25	3.49	6.98	174.6	
Si	10	291.77	14	29	+8	4.67	6.09	12.18	141.7	
Ar	10	400.00	18	40	+11	99.6	9.74	19.48	130.1	
V	10	508.27	23	51	+14	99.75	14.59	29.18	113.4	
Cu	10	659.19	29	65	+18	30.83	21.17	42.34	108.0	
Kr	10	885.59	36	86	+24	17.3	30.86	61.72	109.9	
Y	10	928.49	39	89	+25	100	34.73	69.46	102.2	
Ag	10	1039.42	47	107	+29	51.839	48.15	96.30	90.0	
Xe	10	1232.55	54	124	+34	0.1	58.78	117.56	90.0	
Au*	10	1955.87	79	197	+54	100	85.76	171.52	105.9	Imag

Test Setup

- Customized self-test software (C code) running on target
 MCU during irradiation
- Data output via RS232 to PC (one-way monitoring only)
- Power supply logs of main +12V power to motherboard

Images sourced: Dell.com, Keithley.com, NXP.com

Summary of Results

- Testing started with lowest LET available and gradually increased
- At low LET (<1 MeV*cm²/mg) we only recorded:
 - Single-bit SRAM upsets (low cross-section 3.3x10⁻⁷ cm², automatically corrected by EDAC)
 - Rare CPU reset events not associated with increased power consumption (we'll call these SEFIs; ~3x10⁻⁷cm²)
- As LET increased we saw increasing single-bit upset cross-section (and eventually disabled logging of that event), occasional double-bit errors, and rare peripheral errors, but reset events (now associated with high current) began to dominate the test
- No parts were rendered inoperable during testing. Processor lockups were often self-recovered when high current caused an undervoltage condition.

SEL & SEFI Cross-Section

- DRESET ("destructive" reset) is an error flagged by the MCU as it comes out of an unexpected reset.
- At higher LET these were associated with recovery from a high-current state (SEL?).
- But at low LET (<~8 MeV*cm²/mg) no high-current events were noted (SEFIs?)

Cross-Section of DRESET Events

Breakdown of Reset Events (SEL/SEFI)

- - Two distinct responses lowcurrent resets at low LET, highcurrent resets at high LET
 - No high-current events below LET of 8 MeV*cm²/mg, but above 20 they dominate all other events.

High-Current Events (SEL)

- Supply current to motherboard is a single +12V line
 - Current limited, but typical "high-current" event did not reach supply's limit
- But, +12V supply is internally regulated on-board *and* on-chip:
 - V_{DD LV} is 1.2V core voltage, with maximum specified output current of 150 mA
 - This closely relates to the peak seen during high-current events

Low-LET SEFI Events

- Runs at lower LET (<~8 MeV*cm²/mg) showed processor resets that were not associated with high-current spikes.
- Critically, these were NOT sufficient to induce automatic reset due to overcurrent and internal watchdog timer did not always function → an external watchdog is recommended to reliably initiate POR

Low Power Standby Mode

- Microcontroller can be put into a powered-down standby mode to conserve power (<100 uA) while monitoring for external interrupt signal
- Two tests performed:
 - 1. Device in standby with periodic wake-up from internal RTC
 - 2. Device in standby with external interrupt wake-up
- Even with low LET (3.49 MeV*cm²/mg) the device can get stuck in a sleep mode where it could not wake itself – occasionally this was accompanied by a power increase
- External interrupt-driven wakeup was more reliable.

Low Power Standby Mode Examples

Other Error Events

- Events noted at low LET where resets were far enough apart to allow full self-test loops to consistently complete:
 - Single bit errors in SRAM common, threshold < 0.89 MeV*cm²/mg
 - Double bit errors in SRAM, threshold between 1.78 and 3.10 MeV*cm²/mg
 - Single bit flash errors, threshold between 1.78 and 3.10 MeV*cm²/mg
 - Note: no uncorrectable flash errors
 - One ADC readback error, threshold between 1.78 and 3.10 MeV*cm²/mg
- Other events noted at higher LET (threshold > 3.10 MeV*cm²/mg, but frequency of resets made it difficult to complete self-test loops):
 - DMA transfer errors
 - Possible UART hits (corrupted datastream)
 - DSPI halt

- Insufficient data on any of these events to provide individual cross-sections.
- Total of all errors (except single-bit SRAM) consistently < 1/10th SEL/SEFI count)</p>

Summary

- Internal ECC functionality helps reduce (but not eliminate) soft-errors in SRAM (ECC fully effective with program flash)
- As expected, SEFI and SEL dominate the device response
 - May recover on its own due to on-chip low-voltage detection/POR circuitry
 - But not always SEFI with no current increase not generally internally-recoverable (even with internal watchdog enabled)
 - Not immune from events during low-power sleep modes
- May be useful as an inexpensive off-the-shelf part, but not a "rad-hard" part
 - Could use app-specific testing to better define expected performance
 - On-board detection circuitry needed to recover from certain events
 - Need to combine with TID and other reliability data to get full picture...

Thank You

• Questions?