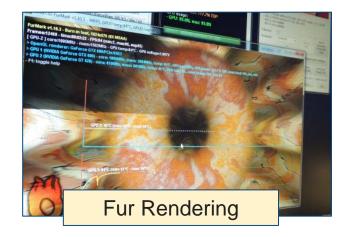
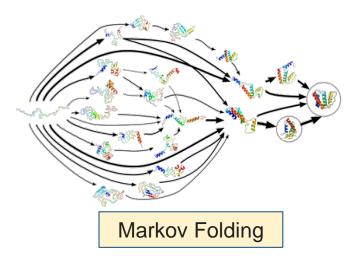


DfR Solutions


## Reliability of GPUs in Autonomous Vehicle Operations

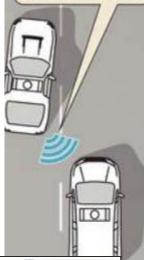

Edward Wyrwas, ewyrwas@dfrsolutions.com

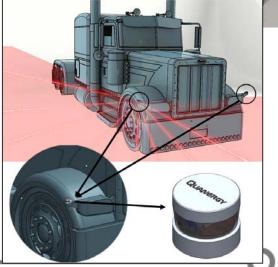
NASA NEPP ETW 2016

#### What's the News on GPUs

- Major difference in processing capabilities
  - Mainstream CPUs have up to 24 cores
  - A GPU can contain 1000s of cores
- GPU or Graphics Processing Unit
  - Traditionally used in personal computers for video graphics
  - They're now used for geophysical models, Bit Coin mining, encryption







#### A "Big Data" Conundrum

- A modern car can have 100 microprocessors which monitor the various states of the vehicle's health
  - This is truly "BIG DATA" something we associate with datacenters rather than automobiles
  - Data guzzling example:
    - 8-Beam LIDAR sensor
    - 864,000 3D points/sec
    - 144 bytes of data per point
    - 125 Mbps (requires 1 Gb/s bus link)
- All distributed or centralized processing on board the vehicle has to be real-time capable
  - CPUs would take far too long to process this data
  - $_{\circ}$  Means a much wider bus is necessary (higher I/O)



Radar sensors on the sides of the car detect traffic in blind spots.





#### **Transition is Two Pronged**



- The typical computer environment ...
  - Immobile (limited vibration)
  - Controlled temperature (office environment)
  - Predictable duty cycle (8x5 schedule)
  - Lifetime expectancy of 3-5 years



- A whole new ball game ...
  - Harsh mobile environment
  - Temperature extremes and diurnal cycling

- $_{\circ}$   $\,$  Even when not in operation  $\,$
- Vehicle system lifetimes of 7-14 years
- Safety critical vehicle systems

#### Leading Edge Lithography

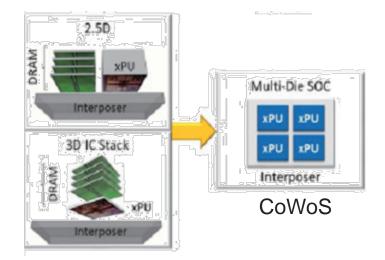
- Very limited empirical data for technology nodes below 50nm
  - NVidia's GPU products are 16nm FinFET\*



- Performance is a now a dominant failure criteria
  - Performance degradation does happen, and its worse at smaller feature sizes
- DfR has worked with component manufacturers and OEMs to develop reliability models for RF and VLSI devices, including GPUs
  - Same semiconductor degradation mechanisms: BTI, TDDB, HCI
  - Same changes in threshold voltage, clock frequency, timing delays, memory integrity

\* http://wccftech.com/nvidia-pascal-geforce-gtx-1080-gp104-gpu-may/

#### **Semiconductor Industry**


- Typical life durations are between 7 and 14 years, while operating between -45°C and 150°C ambient temperatures.
- Test requirements vary from "under the hood" application, to passenger compartment, and other vehicle locations.
- Semiconductor suppliers may not always be aware that a particular IC will end up being used in an automotive application
  - Especially if its used in a Grade 2 or 3 application consistent with commercial-grade components

| AEC-Q100 | Ambient Operating Temperature Range |  |  |  |  |
|----------|-------------------------------------|--|--|--|--|
| Grade 0  | -40°C to +150°C                     |  |  |  |  |
| Grade 1  | -40°C to +125°C                     |  |  |  |  |
| Grade 2  | -40°C to +105°C                     |  |  |  |  |
| Grade 3  | -40°C to + 85°C                     |  |  |  |  |

 Table 1: AEC-Q100 grades vary based on the operating environment temperature range.

#### **Component Packages**

- Copper interconnects through a typical BGA substrate don't work
  - Copper scaling from 45nm to the 7nm node (planar) causes resistance increases of almost 50%
- Through silicon vias (TSVs) make cutting edge performance possible
  - Improved performance from ultra-short interconnections using 2.5D and 3D integration – upwards of 1 TB/s bandwidth
  - If multiple chips are to be utilized, then keeping them as close as possible will save on performance



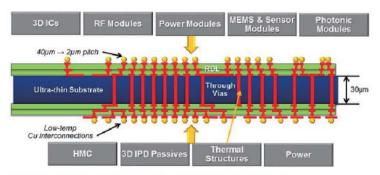
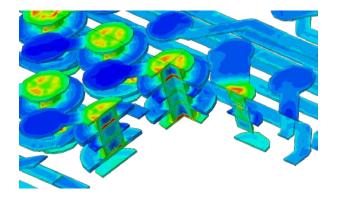



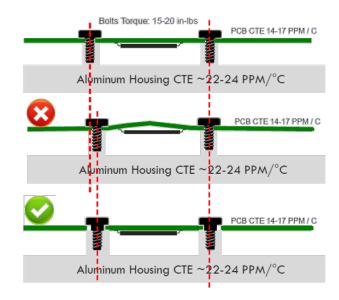

Figure 2: System Moore concept using 3D system package TPV (through-package vias).

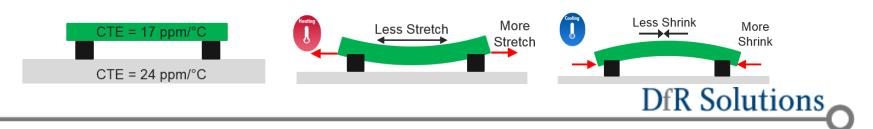


#### **Board Level Reliability**

- High speed integrated circuits creates the need for advances in circuit boards
  - Higher I/O adds more copper to the PCB making it more rigid
    - High speed impendence matched traces
    - Controlled capacitance becomes an issue
    - ESD protection
  - GPU case temperatures tend to be 70°C
     -85°C in a 30°C environment
    - Heat dissipation using vias
    - Heat spreading using planes and heatsinks

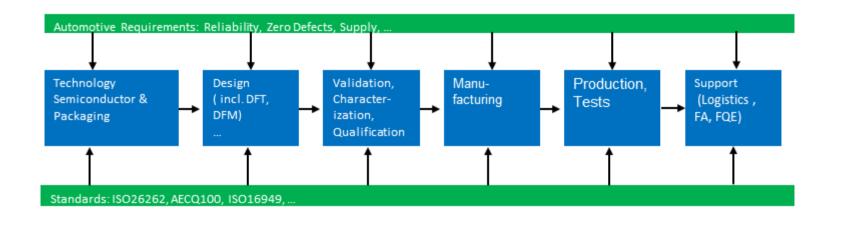



| Elapsed   | Outside Air Temperature (°C)               |    |    |    |    |    |  |
|-----------|--------------------------------------------|----|----|----|----|----|--|
| Time      | 21                                         | 24 | 27 | 29 | 32 | 35 |  |
| (minutes) | Estimated Vehicle Interior Air Temperature |    |    |    |    |    |  |
| 0         | 21                                         | 24 | 27 | 29 | 32 | 35 |  |
| 10        | 32                                         | 34 | 37 | 40 | 43 | 46 |  |
| 20        | 37                                         | 40 | 43 | 46 | 51 | 54 |  |
| 30        | 40                                         | 43 | 46 | 48 | 51 | 54 |  |
| 40        | 42                                         | 45 | 48 | 51 | 53 | 56 |  |
| 50        | 44                                         | 47 | 49 | 52 | 55 | 58 |  |
| 60        | 45                                         | 48 | 51 | 53 | 56 | 59 |  |


https://www.avma.org/public/PetCare/Pages/Estimated-Vehicle-Interior-Air-Temperature-v.-Elapsed-Time.aspx



#### **Circuit Card Housing**


- Why do overly-constrained boards fail?
  - We usually consider the CTE mismatch between the board and the components
  - The board CTE value is no longer valid if it is being affected by an external source
- The board CTE and the Aluminum CTE mismatch
  - Aluminum drives all movement
  - Thermal cycling will exacerbate the effects
  - Operating between -45°C and 150°C ambient temperatures





#### **Differences in Requirements**

- Tip of the iceberg...
  - Compliance to ISO-16949, ISO-26262 and AECQ100
  - Finished assemblies may have to undergo accelerated life tests of up to 3000 hours with temperature ranges from -50°C to 150°C
  - Qualification can take > 5 years



DfR Solutions

#### **In Conclusion**

- There are many challenges ahead
  - Commercial technologies will dominate new product features in the automotive sector
  - Semiconductor and package scaling has increased reliability/durability risks
  - New thermal challenges are arising from higher density packages and circuit card modules
  - Vigorous automotive qualification tests may become the crucible for leading edge commercial technologies
- These challenges are manageable by applying best practices in design for reliability early in the lifecycle

# Thanks

### Edward Wyrwas 301-640-5816 ewyrwas@dfrsolutions.com

