Status of the Gallium Nitride High Electron Mobility Transistor Radiation Testing for the NEPP Program

Leif Scheick
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Ca

California Institute of Technology. U.S. Government sponsorship acknowledged. This research was carried out in part by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration under the NASA Electronic Parts and Packaging Program (Code AE). Other data was collected from NASA flight projects.
Current activities

- Working group discusses best methods for evaluating new wide band gap technologies for infusion into space
 - GRC, JPL, JSC, GSFC, AFRL
 - Monthly meeting to share data and resources for radiation effects testing and reliability analyses
- Previous efforts have been broad stroke testing
 - Heavy ion testing
 - Gallium Nitride HEMTs (JPL)
 - Silicon Carbide MOSFETs (GSFC)
 - Reliability screening
 - Temperature cycling of GaN and SiC
- On going and future efforts
 - Continues radiation testing and analysis
 - Reliability test screens for new devices
 - Guidelines for implementation and testing
GaN Basics

- **Current silicon power solutions are at their innate limits for space applications**
 - Silicon devices are at efficiency limit
 - Best hi-rel devices are less then ~400 V drain-to-source

- **GaN devices are becoming available**
 - Reliability effects are a concern
 - Gate stress is limited (abs max of Vgs +6, -5 V)
 - Thermal effects and aging are under study at GRC

To be presented at the 7th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 16, 2016, NASA GSFC, Greenbelt, MD.
Destructive SEE have been seen in GaN HEMTs- RF GaN

- GaN substrate directly under gate experiences greatest electric field
 - Where 2DEG is reduced
- High electrical stress will exacerbate SEE
- SEE seen in RF devices
 - Tested in amplifier circuits
 - Depletion mode devices

M. Rostewitz / Trans. Nucl. Sci, 2013
Destructive SEE have been seen in GaN HEMTs- eGaN

- Failure seen in 200 V eGaN from 40 V to 200 V
- A. Lidow et al / Trans. Nucl. Sci, 2014 did not observe
- Process variation or test interaction is suspected
- TID and DD are not issues

C. Abbate et al. / Microelectronics Reliability 55 (2015) 1496–1500

L. Scheick / Trans Nucl Sci (2014) 1296–1300
SEE in GaN are Very Complicated

- **VSee vs. Vgs (Xe @ 25 MeV/amu)**
 - EPC1 is EPC1012
 - EPC2 is EPC2012

- **VSee vs. Cr (Xe @ 25 MeV/amu)**

- **Average VSee for Several Lots of GaN HEMTs**
 - EPC1 is EPC1012
 - EPC2 is EPC2012

To be presented at the 7th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 16, 2016, NASA GSFC, Greenbelt, MD.
Effect of Test Circuit on V_{SEE}

Shorted gate to source

FIGURE 1080-1. Basic SEB/SEGR test circuit.
Work to be done

- Identification of SEE mechanism
- Establishment of SEE operating area
- Affect of local circuit on onset of SEE
 - Similar to SEB in power
 - Parameterization of test circuits
- Angular Effects
 - Devices are lateral, and some effects have been seen

To be presented at the 7th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 16, 2016, NASA GSFC, Greenbelt, MD.
PGA26E19BA

TESTING OF PANASONIC PARTS
Optical Images

Front

Back

To be presented at the 7th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 16, 2016, NASA GSFC, Greenbelt, MD.
The active region is very thin.
Cross Section Perpendicular to Gate

- 2.7 µm
- 2.3 µm
- 6.3 µm
- 3.6 µm

- 400 nm
- 317 nm
- 222 nm
- 249 nm
Heavy Ion Testing

- **PGA26E19BA Pr@60 MeV.cm²/mg**
 - VDS = 200 V
 - VDS = 300 V
 - VDS = 400 V

- **PGA26E19BA Ag@43.6 MeV.cm²/mg**
 - VDS = 300 V
 - VDS = 325 V
 - VDS = 600 V PIGS

- **PGA26E19BA Ag@43.6 MeV.cm²/mg**
 - VDS = 600 V

- **PGA26E19BA Cu@20 MeV.cm²/mg**
 - VDS = 550 V
 - VDS = 575 V

To be presented at the 7th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 16, 2016, NASA GSFC, Greenbelt, MD.
V_{SEE} as a Function of LET

Higher LET results in lower SEE V_{ds}.

Average Pass Bias (V_{ds}) [V] for the PGA26E19BA

$V_{\text{GS}} = 0$ V
Cross-section as a Function of LET

Preliminary: Cross-section not dependent on LET.
VSEE as a Function of Incident Angle

Average Pass Bias (V_{ds}) [V] vs Angle for the PGA26E19BA

$V_{GS}=0$ V

Lateral devices like this HEMT are expected to have an angular dependence.
SEE Vds has a strong angular response.
TESTING OF GANSYSTEMS PARTS
Optical Images

Front

Back
Package Cross Section Overview

![Cross-section images with measurements]
Cross Section Perpendicular to Gate

Active contacts and gates

Active contact

Gate areas are small and more complex in newer devices.
Heavy Ion Testing

To be presented at the 7th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 16, 2016, NASA GSFC, Greenbelt, MD.
V_{SEE} as a function of LET

Average pass voltage vs LET (15 MeV/n) for the GS66516T

Preliminary: Higher LET results in lower SEE Vds.
Cross-section as a function of LET

Cross section vs LET for the GS66516T

VGS=0 V

Preliminary: Cross-section not dependent on LET.
V_{SEE} as a function of ion range

VSEE vs Ion Range (~40 MeV-cm2/mg) for the GS66516T

VGS=0 V

Preliminary: Longer range ions are more damaging Xe versus Ag.
FUTURE WORK
More testing…

- Testing of emerging parts
 - GaNSystems
 - Freebird Semi
 - Panasonic
 - Northup Grumman

- Collaboration with other entities
 - NASA
 - DOE and DOD
 - Vendors

More GaN devices are becoming available every day.
EMMI and IR SEE site recovery

This will identify SEE location to establish trends and identify mechanism.
Conclusion

• SEE in GaN HEMTs are complex
 – Mechanisms and underlying device physics are still under study

• New devices show similar effects
 – Panasonic parts seem more robust
 – GaNSystems have more complicated SEE response

• Future plans
 – Measurement of LRC circuit in testers
 – Development of an SOA
 – High voltage issues are becoming more visible
 – Continual search for GaN IGFET