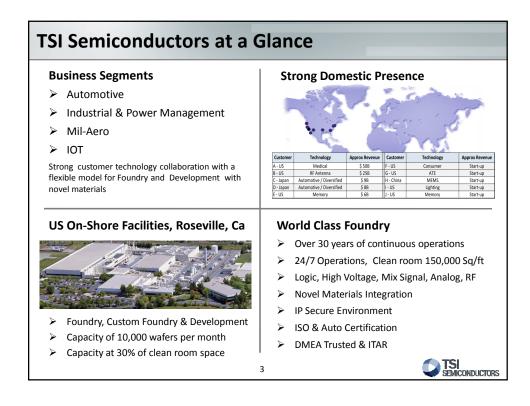
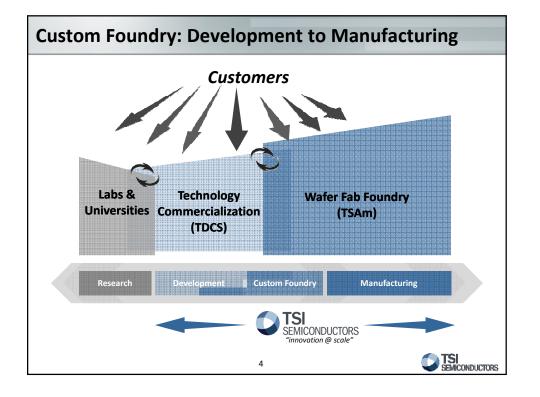
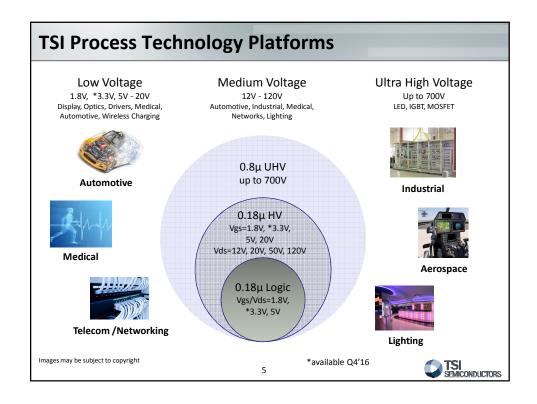
Commercialization of Specialized Nanotechnology Fabrication in a Certified Domestic Foundry

NASA Electronic Parts and Packaging (NEPP) Program 2016 Electronics Technology Workshop

Wilbur Catabay June 16, 2016


INNOVATION @ SCALE

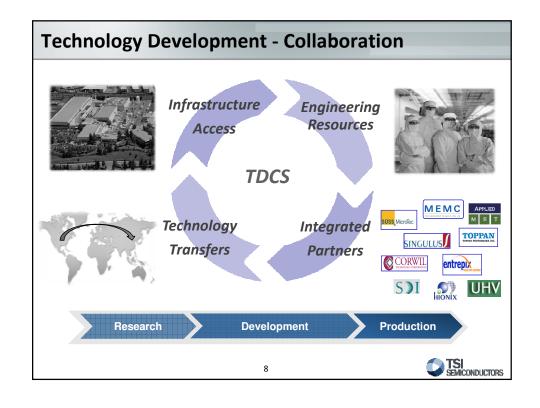


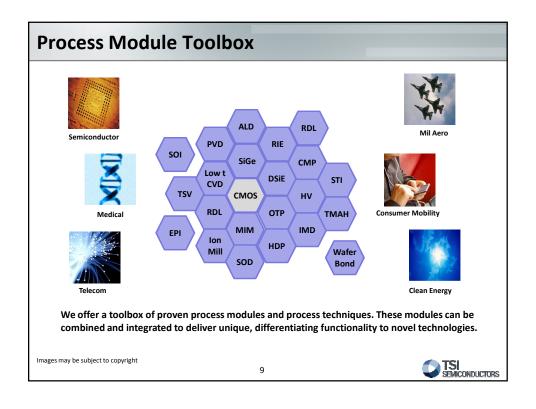

Outline

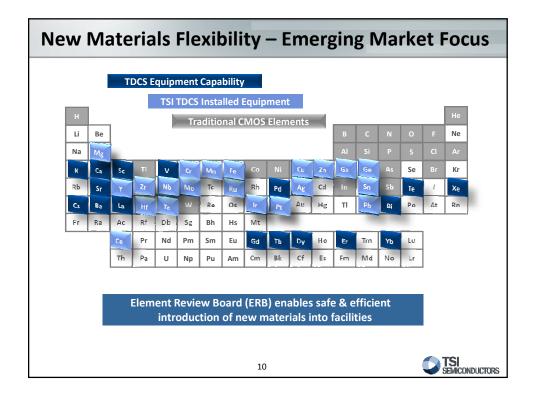
- TSI Semiconductors
 - o Specialized Foundry Services
 - $\hspace{1cm} \circ \hspace{1cm} \text{TDCS -} \hspace{1cm} \underline{\textbf{T}} echnology \hspace{1cm} \underline{\textbf{D}} evelopment \hspace{1cm} \& \hspace{1cm} \underline{\textbf{C}} ommercialization \hspace{1cm} \underline{\textbf{S}} ervices \\$
- Case Studies
 - o Foundry, Customer Foundry, Development
- Leveraging Automotive Certifications for Military Standards
- Summary

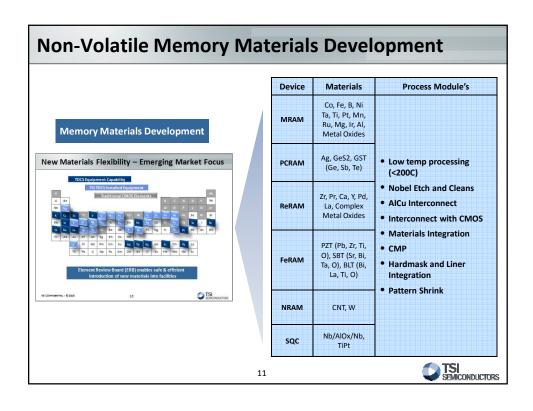
TSI SEMICONDUCTORS

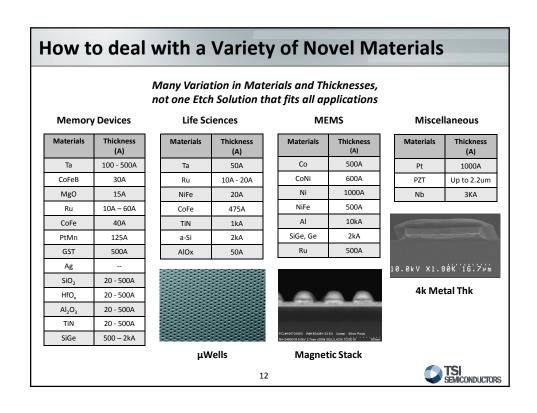
IBM 7HV Technology Transfer


- 0.18µ technology was transferred in 8 months
- Two customers completed silicon runs during the transfer period
- Significant number of devices from Logic, HV, Analog, RF, Mix-Signal

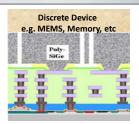

		TSI Semi	conductors Process Dev	rice Menu		
Process	Logic	CMOS	Analog/Mix	ed-signal/RF	High Voltage	
VGS	1.8V & 5V	5V Only	1.8V & 5V	5V Only	1.8V, 5V & 20V	
Triple Well Isolation	Yes	Yes	Yes	Yes	Yes	
FETs	1.8V, 5V	5V Only	1.8V (RF only), 5V	5V Only	1.8V, 5V, 12V, 20V	
					25V, 50V, 120V	
	High Vt * (2ML)	High Vt * (2ML)	High Vt * (2ML)	High Vt * (2ML)	High Vt * (2ML)	
	Super high Vt * (2ML)	Super high Vt * (2ML)	Super high Vt * (2ML)	Super high Vt * (2ML)	Super high Vt * (2ML)	
	N+, P+ diffusion & poly	N+, P+ diffusion & poly	N+, P+ diffusion & poly	N+, P+ diffusion & poly	N+, P+ diffusion & poly	
Resistors			RR poly high R - 1.6KΩ/sq (1ML)	RR poly high R – 1.6KΩ/sq (1ML)	RR poly high R - 1.6KΩ/sq (1ML)	
			RP poly precision R - 165Ω/sq (1ML)	RP poly precision R - 165Ω/sq (1ML)	RP poly precision R - 165Ω/sq (1ML)	
			TaN BEOL (1ML)	TaN BEOL (1ML)	TaN BEOL (1ML)	
Diodes	Schottky Barrier	Schottky Barrier	Schottky Barrier	Schottky Barrier	Schottky Barrier	
Decoupling Caps and Varactors	1.8V/SV N, P caps, vars	1.8V/SV N, P caps, vars	1.8V/SV N, P caps, vars	1.8V/SV N, P caps, vars	1.8V/SV N, P caps, vars	
BEOL Caps	Vertical native (VNcap)	Vertical native (VNcap)	Vertical native (VNcap)	Vertical native (VNcap)	Vertical native (VNcap) High Voltage VNcap - 120V	
всостаря			Single MIM - 2.1 fF/µm² * (1ML)	Single MIM - 2.1 fF/µm² * (1ML)	Single MIM - 2.1 fF/µm²* (1ML)	
			Dual MIM - 4.1 fF/µm² * (1ML)	Dual MIM - 4.1 fF/µm² * (1ML)	Dual MIM - 4.1 fF/µm ² * (1ML)	
BEOL Metal	6LM: M1-MT	6LM: M1-MT	7LM: M1-MT Analog Metal (AM) - 4µm	7LM: M1-MT Analog Metal (AM) - 4µm	7LM: M1-MT Analog Metal (AM) - 4µm	
beve mean	M4,V4,M5,V5	M4,V4,M5,V5	M3, V3, M4, V4, M5, V5	M3, V3, M4, V4, M5, V5	M3, V3, M4, V4, M5, V5	
Inductors			Analog Metal (AM) - 4µm Al	Analog Metal (AM) - 4µm Al	Analog Metal (AM) - 4µm Al	
Masks (1P, 3LM)	21	16	21	16	21	
* Optional Devices/Layers			•			


5



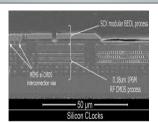


Etching of Novel Materials


	LAM 9600	AMAT DPS2	Tegal 6540 *	Veeco Ion Mill
Gases Available	Chamber A (60C): BCI3,CI2, Ar, N2, O2,SF6,He,O2 Chamber B (250C): DSQ O2, H20	Chamber A (250C): BCl3,Cl2, Ar Chamber B (65C): CF4, HeO2,HBr,Cl2	HRe 2.1 (30-80C): BCl3, Cl2, CHF3, CF4, Ar, O2 HRe 4.0 (170-350C): CO, Cl2, NH3, CF4, Ar, O2	Single Chamber: Ar
Materials Etched (Examples)	Al, TiN/Al/Ti, TiW/TiAl, GST, Ru, Nb , Al2O3,	Chamber A: High-k, Al2O3, TiN, TaN, Ru, Zr, Chamber B: Metal Gate Stacks - Poly & metal alloys	HRe 2.1: Oxide, Ti, TiN, W, Ta, GST HRe 4.0: Ti, TiN, Nb, Pt, AlOx,Ta, PtMn, CoFe, MgO, Ru, Ag	Oxide, Ti, TiN, W, Ag, CoFe, Ni, Mg,

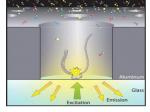
13

* In storage


Novel Device Integration on CMOS Substrates

Monolithic integration of Discrete Devices and CMOS

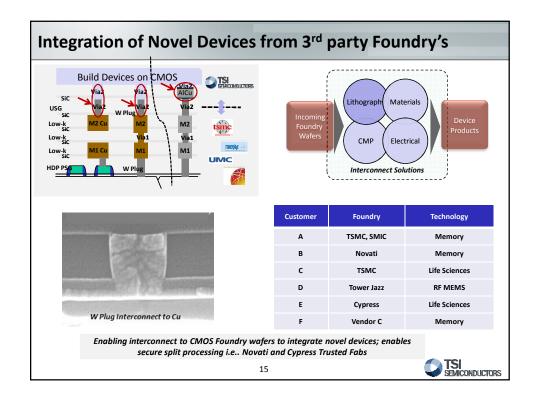
3-D Memory: Courtesy Sandisk

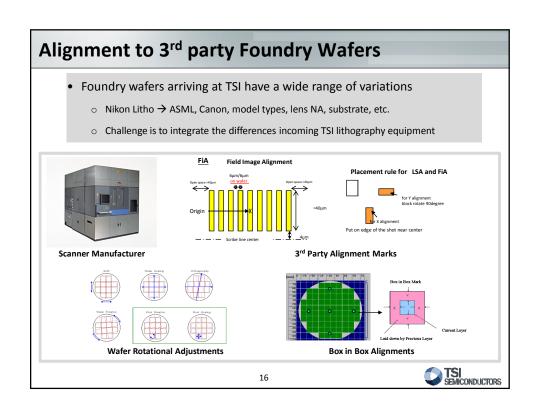


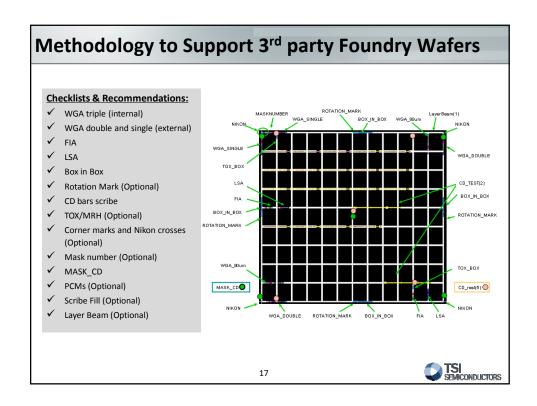
MEMS Resonator courtesy of Silicon Clocks

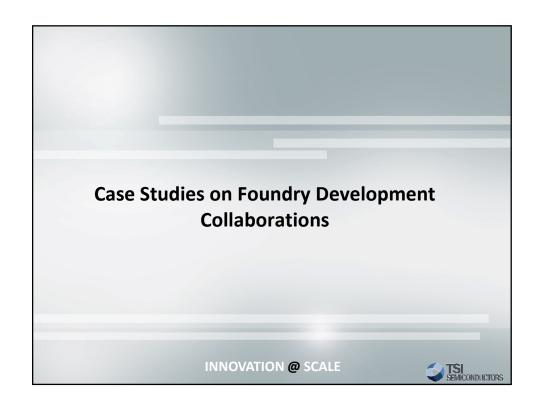
Micro-Mirrors over CMOS courtesy of Spatial Photonics

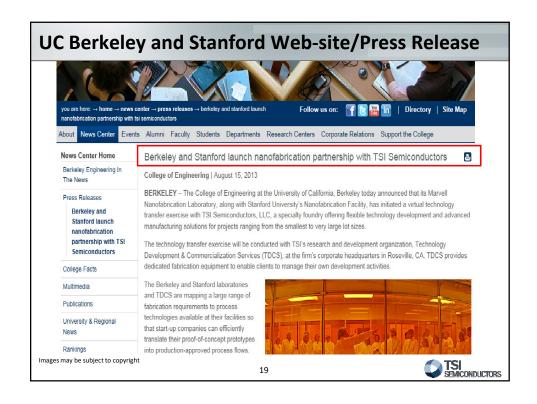
Lab-on-a-chip integrates microfluidic sensors courtesy of Ion Torrent

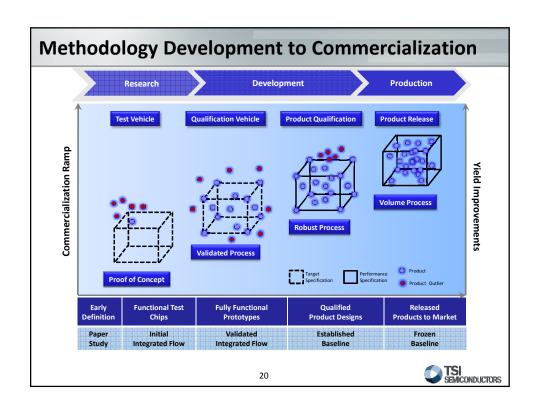


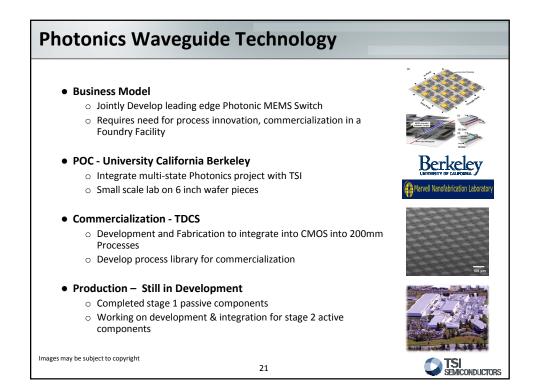

Lab-on-a-chip integrates microfluidic sensors courtesy of Pacific Biosciences

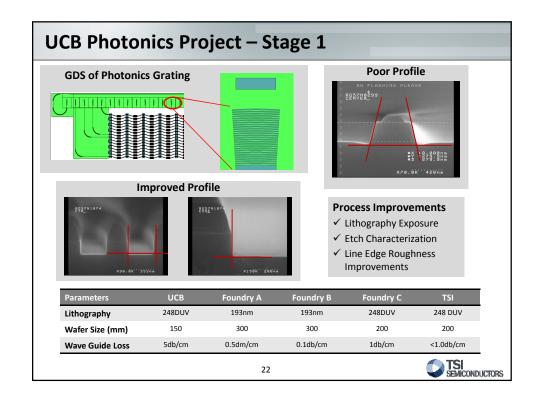

TSI SEMICONDUCTORS

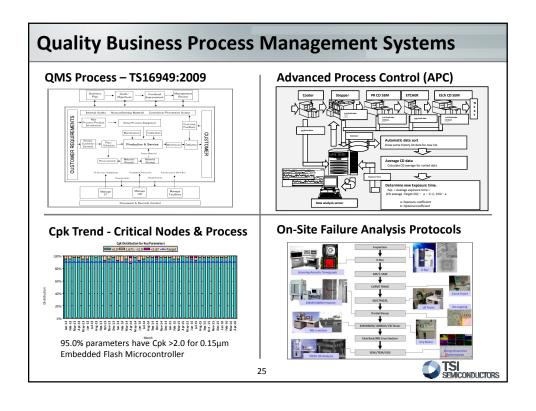

Images may be subject to copyright


14









Certification and Compliance

- TS16949:2009 certification applies for the design & development, production, installation and servicing of automotive related products
 - This was prepared by the <u>International Automotive Task Force</u> (IATF) and ISO technical committee
 - o Attributes for AEC-Q100 (Automotive Electronics Council)
- ISO9000 Quality Management Systems
- ISO14001 Environmental Management Systems
- DMEA Accreditation of Trusted Facility
- ITAR Certified in Electronics category

TSI SEMICONDUCTORS

24

TSI Stress Test Qual for IC's – Partial Lists						
Test Conditions	Туре	TSI16949/AEC-Q100	Mil Guidelines			
	TDDB	٧	٧			
	Hot Carrier Injection	٧	٧			
	Negative Bias Temp Instability	٧	٧			
	Electromigration	٧	٧			
	Stress Migration	٧	٧			
Reliability & Quality	ESD	٧	٧			
Tests (partial list)	Latch-Up	٧	٧			
	Electrothermally Induced Gate Leakage	Customer Request	٧			
	Soft Error rate	√ Sort	٧			
	Process Avg Tests	√ Sort/FT	٧			
	Stat Bin/Yield Analysis	√ Sort/FT	٧			
	*Radiation Hardness	Customer request	٧			
		* In progress by Design v	vith Customer			
	26		TSI SEMICONDUCTO			

Summary

- TSI is positioned as a US-based specialty foundry with a technology platform supporting industrial, automotive, Mil-Aero and medical markets
- We are also positioned to provide a development service (TDCS) for innovative and disruptive materials development not found in typical Production Foundry Fabrications
- Customer IP is safe and secure Trusted, ITAR Certified
- We are based in Northern CA location, close to tech eco-system
- Our services business model and collaboration enables faster and cost effective time to market for these technologies

27

Thank You

Wilbur Catabay

SVP TDCS & Corporate Strategy TSI Semiconductors Corporation

1900 McCarthy Blvd Milpitas, CA 95035

7501 Foothills Blvd. Roseville, CA 95747

Tel: 408-218-9771 wilbur.catabay@tsisemi.com

