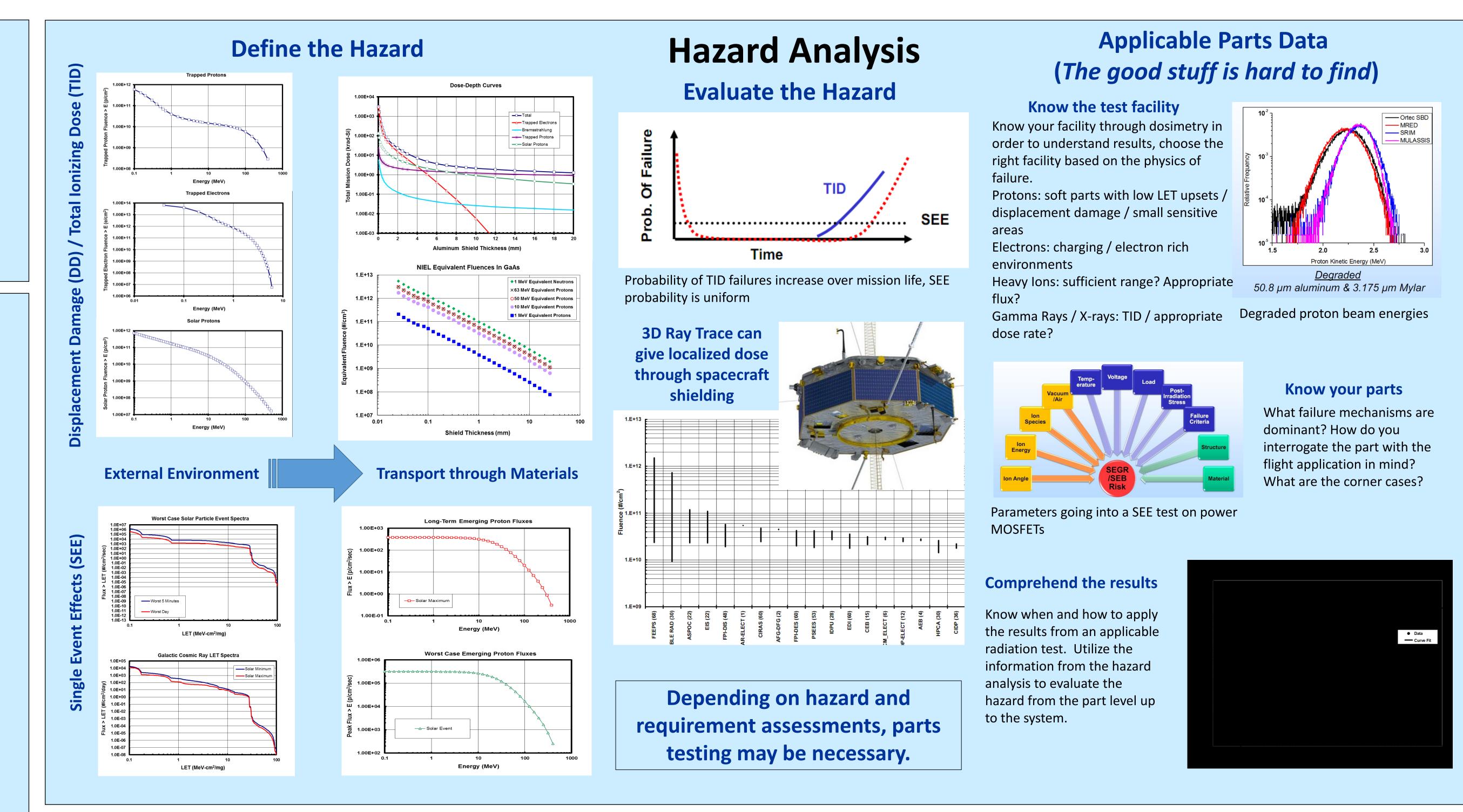
Radiation Hardness Assurance (RHA) Guideline

Michael J. Campola, NASA Goddard Space Flight Center an effort for the NASA Electronic Parts and Packaging (NEPP) Program's Electronics and Technology Workshop (ETW) 2016

RHA Definition and Consideration


RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their *design* specifications after exposure to the mission space environment.

The subset of interests for NEPP and the REAG, are EEE parts. It is important to register that all of these undertakings are in a feedback loop and require constant iteration and updating throughout the mission life. More detail can be found in the reference materials on applicable test data for usage on parts.

Reference Materials

Heavily Relied Upon Documentation for RHA

- NASA Documents
 Guidelines and Lessons Learned found on radhome
- Military Performance Specifications

National Aeronautics and

Space Administration

19500, 38510, 38534, 38535

Military Handbooks

814,815,816,817,339

• Military Test Methods

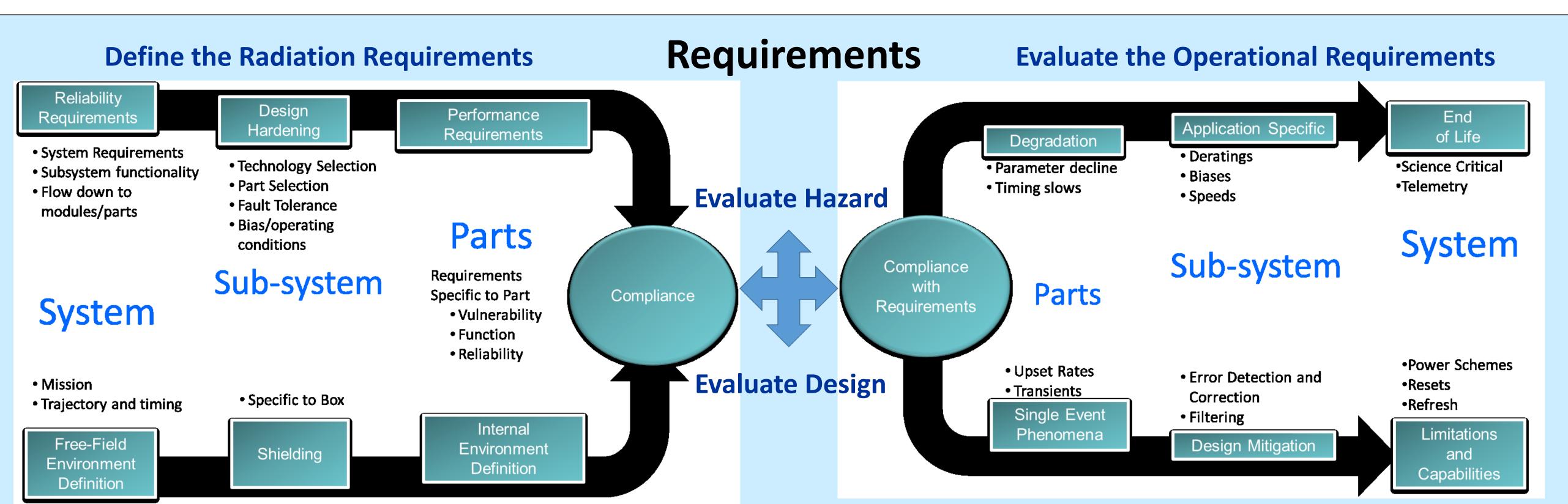
MIL-STD-750, MIL-STD-883

• DTRA Documents

DNA-H-93-52, DNA-H-95-61, DNA-H-93-140

ASTM Standards By Subcommittee

F1.11, E10.07, E13.09


- EIA/JEDEC Test Methods and Guides JESD57, JESD89, JEP133, FOTP-64
- ESA Test Methods and Guides ESA/SCC No. 22900 and 25100, ESA PSS-01-609

Often Utilized Tools

Radiation Databases
 GSFC radhome, JPL radcentral, ESA escies
 Environment Modeling

SPENVIS, CRÈME, OMERE, NOVICE

Radiation effects in devices/materials
 CRÈME, MRED, GEANT, SRIM, MULASSIS

Drivers for a new approach and Future Considerations

Varied Missions – National Assets to CubeSats

- Risk Tolerant vs. Risk Avoidance
- Low budget, shortened schedule
- Short mission duration
- High data rates
- On board processing
- Multi-instrument dependent datasets
- Data continuity from one satellite to the next

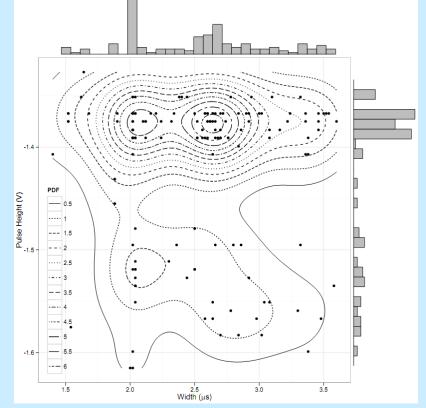
Emerging Technologies and COTS parts usage increasing

- System on a chip solutions, COTS parts are meeting complex needs
- Highly coveted performance
- 3D structures
- Complex radiation response
- Experimentation cannot cover state space

Three Dimensional

Requirements need to be written and incorporated into mission documents such that they are able to flow down from mission level to subsystem and then to the parts selection. These requirements are determined from the hazard definition and evaluation.

The requirements need to be understood in the context of mission success and then updated and applied such that meeting those requirements provides assurance to a working system in the intended environment. This is iterated throughout mission design lifecycle to build a set of requirements that are useful, driving cost and schedule.


Parts' Response

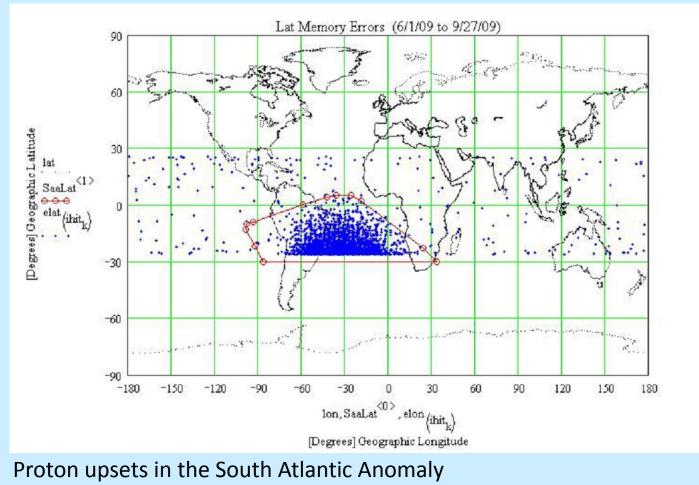
SEL/ SEGR/ SEB: Parts that are susceptible to these types of failures are strongly suggested for test, a waiver would have to depend on redundancy that would allow for failures during the mission lifetime. For FETs there is a need to verify application gate voltage. Testing is required if application gate voltage is below -5V. If above this, a waiver may be able to justify the parts usage.
SEU: In all cases, verifying that the EDAC used on the instrument can handle the rate, or verification that

SEU: In all cases, verifying that the EDAC used on the instrument can handle the rate, or verification that the Single Event Rate (SER) will not affect the mission, will remove risk of the system level. SET: All listed parts suggested for test will exhibit SET of some magnitude. Risk to the circuit from SET can be resolved by analyzing the affect of the worst case SET on the circuit for each instance of the part. Filtering and/or circuit design that follows can be used to warrant the effect of the transient as negligible.

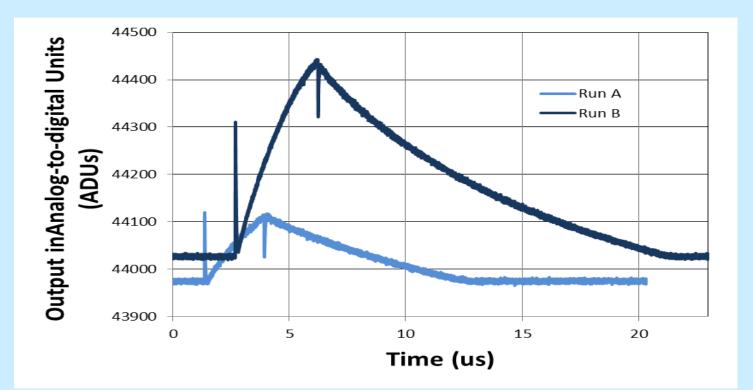
SEFI: In all cases, verifying that the EDAC used on the instrument can handle the rate, or verification that the Single Event Rate (SER) will not affect the mission, will remove risk of the system level.
TID/ELDRS: Parts are very susceptible to gain degradation, especially when operated at low current, so verification that the gain requirements of the circuit can be met by the worst case data. ELDRS robustness is determined by an RLAT from the manufacturer. These data must to provided for verification of lot hardness to fully approve the part. Alternatively, an LDR RLAT can be performed on these devices. In other words a waiver could use the worst case data if it exists to approve the parts.
DD: Parts are very susceptible to gain degradation, especially when operated at low current, so verification that the gain requirements of the circuit can be met by the worst case data. Robustness is determined by an RLAT from the manufacturer. These data must to provided for verification that the gain requirements of the circuit can be met by the worst case data. Robustness is determined by an RLAT from the manufacturer. These data must to provided for verification of lot hardness to fully approve the part. Alternatively, an RLAT displacement damage test can be performed on these devices. In other words a waiver could use the worst case data if it exists to approve the parts.

Design Mitigation

Evaluate the Design


Risk Classification and Tracking

PIN¤	Generic·Part·No.¤	Part∙ Description¤	Package∙ Type¤	Manufacturer¤	FM·Part·No¤	Risk¤	SEL/· SEGR/· SEB¤	SEU°¤	SETቄ	SEFI	TID/ELDRS	DD™
375¤	AT27C512R-90TI¤	EPROM∞	28.TSOP∞	ATMEL∞	AT27C512R-90TI¤	Medium¤	Τ¤	Τ¤	A¤	ޤ	Τ¤	A¤
380¤	AT49BV1614T-11TI¤	Flash⋅Ram¤	48.TSOP∞	ATMEL∞	AT49BV1614T-11TI¤	Medium¤	T¤	T¤	A¤	T¤	ޤ	A¤
500¤	BAT54∞	Schottky Barrier∞	SOT23¤	ZETEX∞	BAT54∞	Low¤	A¤	A¤	A¤	N/A¤	A¤	Aα
510¤	BAT54C∞	Schottky Barrier≊	SOT23¤	ZETEX ¹²	BAT54C∞	Low¤	A¤	A¤	A¤	N/A¤	A¤	A¤
505¤	BAT54S∞	Schottky Barrier¤	SOT23¤	ZETEX¤	BAT54S∞	Low¤	A¤	A¤	A¤	N/A¤	A¤	A¤
485¤	BAV170 (Pb Free)∞	Double∙ diode¤	SOT23¤	Philips Semiconductor∞	BAV170 (Pb Free)∞	Low∞	A¤	A¤	Ą¤	N/A¤	A¤	A¤
490¤	BAV23∞	Double∙ diode¤	SOT143¤	Philips Semiconductor¤	BAV23∞	Low∞	A¤	A¤	A¤	N/A¤	A¤	A¤
495¤	BAV99₩¤	High-speed∙ double∙ diode¤	SOT323¤	Philips Semiconductor∞	BAV99W∞	Low¤	A¤	A¤	A¤	N/A¤	Ą¤	A¤
415¤	BC847BS¤	NPN double transistor∞	SC-88¤	Philips∙ Semiconductor∞	BC847BS¤	Medium¤	A¤	A¤	A¤	N/A¤	T≏	A¤
420¤	BCV61C ·(Pb · Free)¤	NPN double transistor∞	SOT143B		BCV61C (Pb · Free)∞	Medium¤	A¤	A¤	A¤	N/A¤	T¤	A¤
425¤	BCV62C ·(Pb ·Free)¤	transistor¤	SOT143B		BCV62C (Pb · Free)∞	Medium¤	A¤	A¤	A¤	N/A¤	T¤	A¤
410¤	BFR92∞	Wideband∞	SOT23¤	Philips∙ Semiconductor∞	BFR92¤	Medium¤	A¤	A¤	A¤	N/A¤	T¤	A¤
430¤	BFT92∞	PNP·double· transistor∞	SOT23¤	Philips∙ Semiconductor∞	BFT92∞	Medium¤	A¤	A¤	A¤	N/A¤	T¤	A¤
385¤	CD74HC04M∞	Inverter¤	SO-14¤	Harris∞	CD74HC04M∞	Medium¤	A¤	A¤	A¤	A¤	ޤ	A¤
395¤	CXA1439M∞	CDS∞	SO-8¤	SONY¤	CXA1439M∞	High¤	ޤ	T≖	A¤	A¤	ޤ	A¤
405¤	CXD1261AR¤	Timing∙ Pulse∙ Generator¤	QFP-64¤	SONY≖	CXD1261AR¤	High¤	ޤ	T¤	A¤	A¤	T¤	A¤
400¤	CXD1267AN∞	Clock·Driver¤	SO-20¤	SONY¤	CXD1267AN∞	High¤	ޤ	Ţα	A¤	A¤	ޤ	A¤
315¤	ElanSC520-100Al¤	CPU∞	388. PBGA¤	AMD∞	ElanSC520-100Al∞	High≊	ޤ	ޤ	Ąα	ޤ	Ţ≃	A¤
465¤	F-102¤	Current· regulator· diode¤	TBD¤	Sicovend¤	F-102∞	Low¤	A¤	A¤	A¤	N/A¤	A¤	A¤
445¤	FDC6506P∞	FET¤	SSOT-6¤	Fairchild¤	FDC6506P∞	High¤	T¤	A¤	A¤	N/A¤	ޤ	A¤
325¤	HY57V651620BLTC- 10S¤	SDRAM∞	TSOPII∞	Hyundai∞	HY57V651620BLTC- 10S¤	High¤	ޤ	T¤	A¤	ޤ	ޤ	Aα


Risks Called out by part and available data

Documentation of the risks and available data on the part are kept with the official parts identification lists, the as designed lists, and finally the as built lists to incorporate changes in the design as it matures. Risk classification helps with trade studies on whether or not the system requirements are being met and where testing can buy down risk to the project.

System Impact

Capturing the system impact of radiation device responses is tied into the verification of requirements and system performance. If only looked at from the piece part level these types of effects could impact availability, critical functions, or mission success.

ASTM	American Society for Testing and Materials
CDR	Critical Design Review
сотѕ	Commercial-Off-The-Shelf
CREME	Cosmic Ray Effects on Micro-Electronics
DD	Displacement Damage
DTRA	Defense Threat Reduction Agency
EEE	Electrical, Electronic andd Electromechanical
EIA	Electronic Industries Alliance
ELDRS	Enhanced Low Dose Rate Sensitive
ESA	European Space Agency
ETW	Electronics and Technology Workshop
FETs	Field Effect Transistor
GSFC	Goddard Space Flight Center
JEDEC	Joint Electron Device Engineering Council
JPL	Jet Propulsion Laboratory
LET	Linear Energy Transfer
MOSFETs	Metal Oxide Semiconductor Field Effect Transistor
NASA	National Aeronautics and Space Administration
NEPP	NASAS Electronics Parts and Packaging
PDR	Preliminary Design Review
REAG	Radiation Effects and Analysis Group
RHA	Radiation Hardness Assurance
RLAT	Radiation Lot Acceptance Testing
SCC	Space Components Coordination Group
SEB	Single Event Burnout
SEE	Single Event Effects
SEFI	Single Event Functional Interrupt
SEGR	Single Event Gate Rupture
SEL	Single Event Latchup
SER	Single Event Rate
SET	Single Event Transient
SEU	Single Event Upset
TID	Total Ionizing Dose

Current Limiting
Supply Balancing
Triplication or complex logic

down local TID

architecture tailoring

• Filter Transients on Analog

in a safe operating area

• Refresh / reset rates of parts

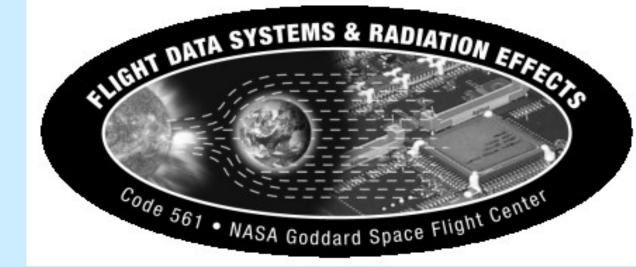
• Derate power devices to be used

• Spot shielding of devices to bring

outputs

Transients shown with statistics can help designers what to expect and mitigate

Extended response of device upsets when run through system configuration


Mission Timeline and Deliverables

IIASA Life- Cycle Phases		valfor ulation FORMU		val for mentation					
Project Life-Cycle Phases	Pre-Phase A: Concept Studies	Phase A: Concept & Technology Development	Phase 8: Preliminary Design & Technology Completion	Phase C: Final Design & Fabrication	PhaseD: System Assembly, Integration & Test, Launch & Checkout	Phase E: Operations & Sustainment	PhaseF: Closeout		
Project Life-Cycle Gates, Documents, and Major Events	FAD FAD Preliminary Project Requirement	FA Preliminary Project Plan	Baseline Project Plan	/ KDP D	KDP E Launch	KDP F End of Missio	Fina Archive of Dat		
Agency Reviews Human Space Flight Project Life-Cycle Reviews ¹² Reflights Robotic Mission Project Life Cycle Reviews ¹² Other Reviews	Д мо		Re-enters appropri cycle phase if modi are needed betwee PDR	fcations 4	Returbishment	PFAR			
Supporting Reviews	Peer Reviews, Subsystem PDRs, Subsystem CDRs, and System Reviews								
the equivalent i documented in 2. Life-cycle revie the attendant K 3. PRR is needed require an SRE 4. CERRs are est 5. For roboticmis 6. SAR generally	n formation is provided the Project Plan. wobjectives and expe DPs are contained in only when there are r . Timing is notional. ablished at the discret sions, the SRR and th applies to human spa SM is determined by t	nultiple copies of syste tion of program e MDR may be combin	approach is fully r these reviews and ems. It does not ned.	ACROILYMS MDR - Mission Definition Review ASM - Acquisition StrategyMeeting MDR - Mission Definition Review CDR - Critical Design Review ORR - Operational Readiness Review DR - Decommissioning Review DR - PreliminaryDesign Review DR - Disposal Readiness Review PLAR - Post-Flight Assessment Review FAP - Formulation Agreement PRR - Production Readiness Review FAD - Formulation Authorization Document SAR - System Acceptance Review KDP - Key Decision Point SIR - System Integration Review LRR - Launch Readiness Review SMSR - Safety and Mission Success Review LV - Launch Vehide SRB - Standing Review MCR - Mission Concept Review SRR - System Requirements Review Red triangles represent life-cycle reviews that require SRBs. The Decision Authority, Administrator, MDAA, or Center Director may request the SRB to conduct other review					

- During the Proposal/Feasibility Phase
- Draft Environment definition
- Draft Hardness assurance requirement
- Preliminary studies
- At the Preliminary Design Review (PDR)
- Final Environment definition
- Electronic design approach
- Preliminary spacecraft layout for shielding analysis
- Preliminary shielding analysis
- Final Hardness assurance requirement definition
- At the Critical Design Review (CDR)
- Radiation test results
- Final shielding analysis
- Circuit design analysis results
- o After CDR
- Remaining Radiation Lot Acceptance tests
- Approved As Built Parts Lists
- After Launch
- Failure Analysis
- Anomaly Root Cause

Acknowledgements

Many thanks to REAG members from past and present that have worked to communicate RHA methods and challenges for NASA: Ken LaBel, Jonathan Pellish, Christian Poivey, Steve Buchner, Bob Gigliuto, Jean-Marie Lauenstein, Ray Ladbury, Megan Casev

