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Integrated System Design for
Radiation Environments
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Integrated System Design for
Radiation Environments
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* Reasons for Activity
Interaction

- Commercial parts (COTS)

- Document-centric work
flow to model-based
system engineering

- Smallerteams

- System mitigation (for
COTS)

- Shorter schedules for
small spacecraft

Requirements

Structuring




Demo Vehicle: CubeSats, VU/Amsat AO-85 Results .
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e Launched October 8th, 2015 as
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Radiation Reliability Assessment of CubeSat
SRAM Experiment Board
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* Assessment completed on o i — Wl ¢
REM

- 28nm SRAM SEU
experiment

* Reasons for integrated
modeling

1. Use commercial off-the-
shelf (COTS) parts

2. System mitigation of
SEL

3. System mitigation of
SEFI on microcontroller

L ————
-

Courtesy of AMSAT




System-level RHA:
Block Diagram of 28nm SRAM SEU Experiment
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Overview of Model Integration of SysML, GSN, BN
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| Components!
Functionalities

Functional Requirements « Model-based documentation of
arguments for radiation reliability
assurance

* Relatedto radiation effects

iCrOSS Reference * Constructargument template from
R&M hierarchy and System Models
Design/ Architecture
: . _ Eeedback,

* Hierarchical Block Diagram 'Besign teration

models %

N Inf

» Component/ Subsysteminterface nierence

and interconnection. Bayes Nets-Cause/Effect

* Fault Model — Radiation
induced fault effectsand their Causal
propagation Relationshig « Construct BN structure by traversing the fault

propagation paths




Overview of Modeling Approaches Used
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BN Network

» Specification of systems * Visual representation |+ Nodes describe probabilities of
through standard notation of argument states
» Added fault propagation » Goals, Strategies, o Calculate conditional
paths and Solutions probabilities from observations
Isolate and contain Latch Te—
up fault effects close to
the fault source.
------- A l ] Vdd ° = 9] Input
[ rr—— - P Dis: 4 n -:|
R Per A e 10 ot \ y/ /
PowerCulOfi-Ret .“"H_Iuhm”m + ) Data (] Word
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Goal:2 Comupiea20%|[] [ [Wrong  0%| M
W0 | | oo uCdstects hioh |y the beam was pommsdat N

current conditions (>1A)
and shuts down the power
bus.

the microcontroller, high-
current conditions
resulted in the v3p3_uC to
be shut down.

O SRAMData

(Cood 4% |

Bad 16% |

[




Integrated Model-Based Assurance Path .
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SysML

Functional Model Bayes Net GSN

Fault Model — Cause-Effect Graph — Argument Structure
Probability Scenarios Evidence from BN

Objectives
-Obtain systematic coverage of possible faults
-Move towards quantitative assessment of risk/reliability




Goal Structuring Notation (GSN):

Visual Representation of an Argument

Strategy:
Reasoning
step, nature of
argument

Justification:
Explain why a
claim or
argument is
acceptable

Assumption:
Needed for goal
or strategy to be
valid

Solution: ltems of
evidence. Test
reports linked.

Goal:
Claims of the
argument

ssssss

Perform characierzstion
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Context: How the
claim or reasoning step
should be interpreted.
Can be linked to
documents or other
models.

M of N options:
M out of N paths
can be
completed to
prove goal

Supported by:

Inferential or
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Austin — A CubeSat-Payload Radiation-Reliability Assurance Case



NASA Reliability & Maintainability (R&M) Template

* Old Paradigm: Reliability
proven through list of tests
passed

* Proposed New Paradigm: NASA Reliability &

VanderbiltEngineering

Objective: System remains functional for intended lifetime,
environment, operating conditions and usage

Context: Description of

Maintainability (R&M) Template created to change operating environment,
reliability requirements to be objective-based including static, cyclical,

(Groen, RAMS 2015)

- Based on Goal Structuring
Notation

- Created with Class A Missions
in mind
- Graphical structure to reliability

requirements allows for
integration with MBSE

and randomly varying loads

Strategy: Understand failure mechanisms, eliminate and/or
control failure causes, degradation and common cause

failures, and limit failure propagation to reduce likelihood of
failure to an acceptable level

Strategy: Accesses quantitative reliability measures and

recommend or support changes to system design and/or
operations

R&M Template (Groen, RAMS 2015)

 Can an assurance case for the radiation-reliability of a sub-Class D mission be

made? Is it useful?

Austin — A CubeSat-Payload Radiation-Reliability Assurance Case



Top Level GSN Model of REM Experiment Board
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* Top level goal: Complete science ropooat | context -
mission objective Fumisoencemissen || Raaatonenvronment

e Strategies: Provided functionality MSEUTW'
and mitigate radiation environment 7

Strategy

* Goals: Validation of “Nominal” and | |

functionality.

“Mitigation” functionalities ST
. . . introduced by SEE
- Focused on radiation-induced faults l

[

c Ref - Goal: Mitigation Functionality

Ref - Goal: Nominal Functionality

Ensure that the system is
tolerant to faults
introduced by SEE

System provides the
desired neminal
functionality.

Nominal Functionality l

Mitigation Function...
GSN GSN




“Functions”

GSN Models for Single Event SRAM Experiment

Validate Nominal Functions

E-
Goal: Nominal Functionality

System provides the
desired nominal
functionality.

vy

Strategy

Test functionality of each
component and
subsystem to meet
desired functionality

Goal

Test "Processing"”

A 4
v % Solution:
|
Goal

[ lity Test Results

to validate Goal
Test "Exec
Test "Store Data"
v v v
|
Solution: Goal

Functionality Test Results Test "Power Regulation”

a) Test "Trim Current at

Max"
b) Test "Regulate power"
k-]
Goal

Test "Power Supply"

4
Solution:

Functionality Test Results

Solution:

Functionality Test Results

Solution:

Functionality Test Results

|dentify
Component

Susceptibility
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Validate Mitigation Functions

Goal:

=3

Understand susceptibility
to SEE for components
(and maybe subsystems

272)
v

Strategy

=3

Test SEE susceptibility of
each component (and
maybe subsystem ?)

v

[ Fu n Ctlon S” propagation paths in

Goal

Blocks = to validate v s

Test SEE Susceptibility
for

a) Power Bus

b) Voltage Regulator

c) Load Switch

d) SRAM

e) Microprocessor

f) WDT

g) Microprocessor+
Voltate Regulator + Load
Switch

h) SRAM + Voltate
Regulator + Load Switch

Goal

Mitigation functionality at
each level of the system
has been verified and
validated

Strategy

Test mitigation
functionality of each
component and
subsystem to meet
desired mitigation
functionality

N Z—

Goal

Test "Handle SEE”

through all fault

system model.

A 4
Ref -Goal

]|

|
Goal Goal

|

Test "Power Regulation™

Test "Handle SEI” Test "Handle SEFI”

a) Test "Trim Current at
Max"
b) Test “"Regulate power™

v v

|
Goal Goal

\a—*

Test "Detect High

Test "Detect Missing
Current”

Heartbeat™

Goal

Test "Reset”

h 4

Solution

=

SEE susceptibility test
results

o
Goal

lEJ

Test "Power Cycle”

p— A

SEE Mitigation

A

functionality results




SysML Block Diagram of REM Experiment Board
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SysML Block Diagram of REM Experiment Board .

<< Block >>

SRAM1::SRAM

VanderbiltEngineering

Focus on
Load Switch,

SRAM

subsystem



SysML Internal Block Diagram with Fault
Propagation Paths

VanderbiltEngineering
 Fault (F) Change in physical operation, depart from nominal

* Anomaly (A) Observable effect or anomalous behavior from fault

* Response (R) Intended response of component to A and F
(mitigation)

EiLoad Switch Fault Propagation

wiinltens
TID ow'oltage

i:-:-g'a:le:l LowWOut

PowerCutOff-Ref R
A """" b Mgminal
LowlnputVoltage — I : PowsrDiscopine
: -
i : PowerDisconnect
VIN | i
| | e
HiahCurrent \Degraded i

nwument it |
- ! HighCurment
HighCurrentNotCuoff

HighCurrent

|m;
M

_

(=]

=
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Fault Model — Load Switch

VnndprhilfF'nn'neering

Load Switch Eﬁ @

TID
i:—:-g'a:l—:-:l LowWiOut

A PowerCutOff-Ref(2 | |
[ R ,:.____..____.__..l : I
Lowlnputvoliage — :;'_“_';':'_“_"f n= PowearDizconnect
[=] LowWin ! i -
T H ! PowerDisconmnnect =
| i
| i
High Cumment i_“J adead | VOoOuUT
--------- - ! [ ] HighCurment
1

HighCurrentNotCuoff

HighCurrent

» A LowInputVoltage anomaly (from another  TID fault could affect load switch response,
component) leads to appropriate Nominal leading to Degraded PowerCutOff
response from PowerCutOff function, functionality
leading to PowerDisconnect « LowlInputVoltage anomaly could be

» A HighCurrent anomaly (from another passed on to the component downstream
component) leads to appropriate Nominal e HighCurrent anomaly may not be
response from PowerCutOff function, detected or cutoff
leading to PowerDisconnect




SysML Internal Block Diagram with Fault
Propagation Paths

e SRAM @

- Effects (E) impact L

on functionality @

VanderbiltEngineering

- Faults/Anomalies Tio A
ﬂOW through ports {HQTC-J"-:'“ HighCurrent StoreAndRetrieveDal:
DE' PowerDisconnect, Low\oliage
to affect other o

components I F I

I : | CorruptedDataStored
SETOnDataDuringWrite
h{x:-":c'il"u:-.n
s A
I : I CorruptedDataRead

SETOnDataDuringRead

7




Fault Model - SRAM

SRAM

SEL

TID

HighCument
ra
=
De PowerDisconnect, Lowlbltage

]

SEU

Ei

SETOnDataDuringWrite

Incomectinput

V1

VanderbiltEngineering

CorruptedData Stored

StoreAndRetrieveDal

BadData

SREO

SETOnDataDuringRead

CorruptedDataRead

» SEL, TID faults could lead to HighCurrent
anomaly

» HighCurrent failure-effectis output to other
components through the VVdd power-port

« SEU, SETonDataDuringWrite faults could lead to
CorruptedDataStored anomaly

» PowerDisconnect, LowVoltage, Incorrectinput
failure-effects from other components could also
lead to CorruptedDataStored anomaly

» CorruptedDataRead anomaly results from
CorruptedDataStored anomaly as well as
SETonDataDuringRead fault. Further, it leads to
output of BadData failure-effect

 StoreAndRetrieveData functionality can be
degraded (Effect node) due to HighCurrent as
well as CorruptedDataStored anomalies




Fault Model — SRAM cntd.

SRAM

Vdd HighCurrent

VanderbiltEngineering

StoreAndRetrieveDal

A=A 7

ReadDuringWrite

SETOnControl
Weond Input WriteDuringRead
.S L]

Control
WrongWordWritten
A WrongWordRead
D WrongCommand
Wronglnput
S

Address F

SETOnAddress

« SETOnControl fault could lead to
ReadDuringWrite and WriteDuringRead
anomalies, which could lead to
WrongWordWrittenanomaly.

» ReadDuringWrite could lead to HighCurrent
anomaly.

» Wronglinput failure-effect fromother
components to Control or Address ports could
lead to WrongWordWritten or WrongWordRead
anomalies.

 SETonAddressfault could lead to
WrongWordWritten or WrongWordRead
anomalies.

» StoreAndRetrieveData functionality can be
degraded (Effect node) due to HighCurrent as
well as WrongWordWritten anomalies.




Custom Modeling Environment - WebGME
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e WebGME is usedto developf..r-c ey S U —
the modeling framework MR EI ,, e oo =
e Modelsinclude: S S o
- Goal Structuring e EEEEEN === -
Notation (GSN) — _ e
- System model (SysML) > MOCd;r'“',E;S'tor i I M — '\4?33
- Fault Propagation | | | Browser
- Function/Behavior [ |
Models =
« Allows forlinks across —
m_Odels “““““ i =l Attributes
e Linkstoexternal p— — ‘ Panel
documents
https://webgme.org/ - e

Austin — A CubeSat-Payload Radiation-Reliability Assurance Case


https://webgme.org/

Model-Based Assurance Case (MBAC+ (=WebGME))
for Radiation Hardness Assurance Activities

VanderbiltEngineering

o Tutorialat NSREC 2017 Tuesday,
July 18, during lunch

 Learnhow to use NASA's Reliability
and Maintainability Template to
construct a radiation reliability

assurance case o = = |
« Modeling environment also supports ) B r——
SysML Block Diagram modeling with == i —
fault propagation (no Bayesiannets | = —*—,,,, T 3
yEt) | : .
«  Browser based o
« Freenon-proprietary site hosted on | =
Amazon (AWS) (like Créme) = L
* Freeimages of site for proprietary or | .= === SEE..

export controlled modellin? for
hosting on Amazon GovCloud or
internal servers




Bayesian Network Models

BN Structure

* Node are probabistic or determinstic variables
in a domain

* Nodes can also be discrete or continuous.

 Directed edges capture the dependency
relationship between the nodes

BN Parameters

« State of a probabilistic nodes are expressed
as probability (or probabistic distribution)

* Dependency relationship of a child node on its
parents is expressed in terms of conditional
probability tables (or likelihood functions)

BN Inference

* The BN inference process estimates the
probabilistic distribution (posterior) of each
node, when the states of certain nodes are
fixed (observation/ evidence)

" Sig Event Environment )

= .

VanderbiltEngineering

) Input
Correct 100% .|
Incorreet 0% [

O SEU
O Vdd
Asent 50% ]
Corret 101+ ] Present 50% W
low 0% A /
Q Data Q Word
Cean  50% | Correct100% [ |
Corrupted 20% M Wrong 0%

N

) SRAMData

Good34% ]

Bad 16%
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Development of Bayesian Network Models

from SysML
< > Traverse design model
SysML models - from each fault to

- Architecture, Fault Models
- Functional requirement models

N —

™

|dentify states,
likelihood
relations, prior
and
conditional
probabilities.

generate flat causal
relationship graph.

VanderbiltEngineering

For each component/
subsystem sub-graph,

mm) add functionality (leaf

node) based on
functional model (if not
present).

Prune graph
based on
&= cxpert
knowledge,
convenience
etc.

|

Add additional
edges based on
functional
dependency. Add
additional nodes
(edges) for higher
level functions
(functional model).

Merge common
nodes across fault

le=d paths - faults,

anomalies,
functional effects
and responses.




SysML Fault Models SRAM/Load Switch

Sub-Syst

em
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Detailed fault models shown in expa
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SETonControl
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P
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i
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[=3
[
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A

WriteDuringRead

(F]

SETonAddressDuringWrite

WrongWordWritten

A
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WrongWordRead
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|
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Data

SETonDataDuringWrite

CorruptedDataStored
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Bayesian Network SRAM/Load Switch (1/3)

Determinstic Node Description:

» MissionTimeElapsed: Time elapsed
in the mission can be set to any of
the following states
e < 1 year for Low TID
e 1-2 year for moderate TID
e > 2 year for High TID

* SingleEventEnvironment: The
current environment can be set to
any of the following states
* Low Rate Region: Low probability
of SEE occurrence.

» South Atlantic Anomaly (SAA):
Greater probability of SEE
occurence

Absent
(O Temperature T
O Preent |Absent Absent
InSpec Low Present kil Present
QutofSpec [ Medium j
High ki
@] Current
IS
o vin Lo5=8
OutofSpec ki
InSpec
OutofSpec W\
(O LoadSwitchOperation
Success
Fai ki
\ - = O SET Data
\Absent i (@] Input
= W Present i Corract
Present 7
Correct Incorrect A
Low ki /
@] Word
@] Data
Correct
Clean Wrong i
Corrupted ki /
@] SRAMData
Good
Bad 7

e
€ WMissionTimeElapsed b
S]]

VanderbiltEngineering

(Q)

" Single Event Environment

() SET_Control

(O SET_Address




Bayesian Network SRAM/Load Switch (2/3)

Probabilistic Nodes Description (1/2):

Probability of ...

* TID : Presence/level of TID

* SEL: Occurrence of Latch up

 Current: Supply current being in
spec

* Temperature: Load Switch
temperature being in spec.

* Vin: Load Switch input voltage
being in spec

» LoadSwitchOperation: Quality
(“success”) of load switch operation
to cut off power

e
€ WMissionTimeElapsed b
S]]

(Q)

" Single Event Environment

VanderbiltEngineering

Q SEL
() SET_Control (O SET_Address
Absent
(O Temperature T
O Preent |Absent Absent
InSpec Low Present il Present
QutofSpec [ Medium j
High ki
@] Current
IS
o) vin Lo5=8
OutofSpec ki
InSpec
OutofSpec W\
(O LoadSwitchOperation
Success
Fai ki
\ - = O SET Data
\Absent i (@] Input
= W Present i Corract
Present 7
Correct Incorrect A
Low ki /
@] Word
@] Data
Correct
Clean Wrong
Corrupted ki /
@] SRAMData
Good
Bad 7




Bayesian Network SRAM/Load Switch (3/3)

Probabilistic Nodes Description (2/2):

Probability of ...

« SEL: Occurrence of Latch up

* SEU: SRAM- occurrence of upsets

* SET_x (x=control, address, data):
SRAM - occurrence of transients on
control, address, data ports

* Input: Incorrect input to SRAM

* \Vdd: Input Power to SRAM being
correct or low

» Data: SRAM data being correct or
corrupted

* Word: SRAM words being correct or
wrong

« SRAMData: SRAM Data being
correct

e
€ WMissionTimeElapsed b
S]]

O

Vin

InSpec
OutofSpec

VanderbiltEngineering

(Q)

" Single Event Environment

Q SEL
() SET_Control (O SET_Address
Absent
(O Temperature T
O Preent |Absent Absent
InSpec Low Present il Present
QutofSpec [ Medium j
High ki
@] Current
InSpec
OutofSpec ki
W\ /
(O LoadSwitchOperation
Success
Fai ki
\ - = O SET Data
Input
[Absent — & =
= W Present i Corract
Present 7
Correct Incorrect A
Low ki /
@] Word
@] Data
Correct
Clean Wrong
Corrupted ki /
@] SRAMData
Good
Bad 7




Bayesian Network Inference — Case 1
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SEL
[ SET_Control Lo ] SET_Address
[ais ] Temperature = ™ Absent 90% ||
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f i X correct 100% ([ |
- MissionTimeElapsed (< 1 years) = wrong 0%
Corrupted 1%| =

- SingleEventEnvironment (low-rate region)

- Evidence : Input = Correct

L]

SRAMData




Bayesian Network Inference — Case 2

L]

InSpec
OutofSpec 10% [

Temperature

0% (]

L] Win
s0% ]

InSpec

OutofSpec 10% (] p\

1 LoadSwitchOperation

Success 1D{I‘}-{:
Fail 0% | =

SEL
Absent 50% (D
= s Preent 50% |0 |
Low  90% T
= Medium 10% |]
High =
L] Current

InSpec

2% I |

OutofSpec 14% ([
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/

BN Inference - Case 2

Doty fe ot

[an] SEU
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Present 50% | ™

o Vdd
Correct 100% (|
Low 0% =

- MissionTimeElapsed (<1 years)
- SingleEventEnvironment (SAA)

- Evidence :

Input = Correct
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L] SET_Control

[a] SET_Address
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Present 50% ||
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Inference with Pruned Bayesian Network .
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BN Pruned based on
* Load Switch operates
correctly for missiontime of 2

years S—
e Remove Load switch portions flo o |
e 2. SET probability of affecting i‘EﬂiP J : (Corret o0 I
SRAM is very little / ; fpoomect O] :
. Remove SET *nodes b e
e 3. Input to SRAM is correct I
e Input (data)= Correct = a0
« SEE environment setto LEO or e M
SAA BN Inference
« Shows sensitivity of SRAM data to O SRAUData - _SingleEventEnvironme
SEE environment Good 4% [T Nt (SAA) B
Bad 16% w / - Evidence: Input =

Correct




Transition and Related Work with JPL .
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Related Project with
JPL
« Command and
Data Handling
(C&DH) Board
 Build reliability

Sphinx C&DH

models and
Safety case for .
subset of C&DH Iéldn?r Flalih“?ht
: orm ractor
functions “CubeSat flight system development for enabling deep space

science,”T. Imken et al, IEEE Aerospace Conference 2017




Summary

VanderbjltEngineering

* Developed integrated
process for model-based
assurance case for =
radiation reliability

* Constructed example /
SysML models augmented o “"“ S | e

Gives
structure to

Isolate and contain Latch

with radiation-induced faults e | Shus R EEE
and propagation L [ cmm P
e BN inference “observations” oo [
used to assess impact of ' =]
various faults on SRAM comal  ° soutons1 " R R o= i
performance S gt =
I a—— i
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