PBGA & QFN
FCBGA/3D Stack TC/TSC Evaluation

by

Reza Ghaffarian, Ph.D.
NASA-JPL-CalTech
(818) 354-2059
Reza.Ghaffarian@JPL.NASA.gov

Copyright 2017 California Institute of Technology
Government sponsorship acknowledged

NEPP Electronics Technology Workshop (ETW 2017)
June 26-29, 2017, NASA GSFC

http://nepp.nasa.gov
PBGA & QFN

- PBGA TC Evaluation
 - Numerous BGA packages
 - WLP assembly challenge
 - Standard 3D stack
 - High I/O flip chip BGA, 2.5D (passive interposer)
 - Accelerated testing/failure mechanisms
 - PCB finish effect

- QFN evaluation
 - Various QFN package sizes
 - Effect of conformal coating
 - Accelerated TSC/TC testing

- TMV/2.5D/TSV
 - TMV test vehicle and build
 - Interposer 2.5D test vehicle build
 - TSV daisy-chain test approach
Best Practices and Guidelines
• Test, usage, screening, qualification
• Radiation facility studies

Guideline with Test Results NEPP Website

NEPP – Product Delivery

NASA EEE Parts Policy and Standards
Government and Industry Standards
Representation
• SAE G11/G17
• JEDC/JPC
• Aerospace TORs

Assurance

NEPP Standard Products
• Test, summary, and audit reports
• Conference and workshop presentations
• Alerts

Related task areas:
Technology/parts evaluations lead to new best practices, etc...

NEPP – Memories

New materials/architectures
• Resistive
• High/low density
• Spin torques transfer magnetoresistive
• Antiferromagnets and spin
• Intel Ceramic
• Enabling ”universal” memories

ORAMs
• Displays/technology (in progress)
• Components ECM (future)
• Processors/CAM (future)

Related task areas:
Deprocessing for single event testing (also w/processors, FPGAs, ...)

NEPP – Processors, Systems on a Chip (SOC), and Field Programmable Gate Arrays (FPGAs)

State of the Art COTS Processes
• TSMC CMOS 90, 45, 32, 22
• IBM, Inari, AMD

“Space” FPGAs
• Microsemi/MIO
• VME/MIO
• ALI/Brea/Alti
• Taiwan/FPGAs

COTS FPGAs
• V蒂亞納
• Megatech
• TSC Microelectronics

Potential future task areas:
adversarial intelligence (AI) hardware, Intel Stratix 10

Best Practices and Guidelines

• Test, usage, screening, qualification
• Radiation facility studies

Realizing Sleep in a Nanoscale World: A Review

Reza Ghaffarian/JPL/Caltech
Best Practices and Guidelines
- Test, usage, screening, qualification
- Radiation facility studies

BOK
- Technology and product status and gap analysis

NEPP TC Reliability

NEPP ETW-2017
Guideline Test Results
NEW NEPP TASK
Outline

• Reliability
 • FCBGA/PBGA/WLP
 • 3D stack

• PCB Finish
 • HASL for SnPb
 • ENEPIG for WLP and FPGA

• Reliability Results
 • 200 Thermal cycles
 • 200 Thermal shock cycles
 • X-ray, optical & X-section/SEM images

• Summary
- Designed test matrix
- Select high I/O PBGA/FCBGAs and FPGA & 3D stack daisy-chain package for solder joint reliability and monitoring
- Selected two PCB finish (HASL/ENEPIC) with traces either on top or one layer under with microvia interconnections
- Successfully assembled TVs both single- and double-sided
- Performed QA evaluation followed by reliability testing
- Performed 200 TC (-55°C/100°C) or 200TSC (-65°C/150°C)
- PBGA pitch from 0.4 mm to 1.27 mm
- 3D stack, 1mm pitch
- WLP, 1600 balls, 0.3 mm pitch
SnPb or SAC on ENEPIG

A PCB with “corrosion spikes” on Ni layer. The IMC layer spalled off.
Tegehall-ESA

ENEPIG/SnPb is NOT recommended for high T use.
Milad-Uyemura

Growth Rate of IMCs
Sn-37Pb > Sn-3.0Ag-0.5Cu
3D Stack
Single-sided
3D Stack
Double-sided
X-ray FCBGA 1924 I/O
3D Stack
200TC (-55°C/100°C)
FCBGA 1924
200 TSC(-65°C/150°C)

SN11 ENEPIG
SN11 Back

SN12 HASL
SN12 Back

NEPP ETW- 2017
X-ray
FCBGA
1924

SN11
ENEPIG

SN12
HASL
FCBGA 1924 on ENEPIG 200 TS (-65/150°C)
FCBGA 1924 on HASL
200 TSC (-65°C/150°C)

No defective solder connections were found.
SEM/EDS
FCBGA
1924
ENEPIG
HASL

NEPP ETW- 2017
Summary

- Released NEPP report
 - https://nepp.nasa.gov/
 - Evaluated FCBGA, FPBGA, 3D Stack, and more
 - PCB finish
 - HASL/ENEPIG

- 3D Stack/FPBGA1924
 - 200 TC (-55°C/125°C) on ENEPIG
 - No failures of 3D stack/FCBGA
 - 200 TSC (-65°C/150°C)
 - No failure of FCBGA 1924
 - Failure of FPBGA from package sites

- Evaluate further when funded
The research described in this publication is being conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

The author would like to acknowledge the support of the JPL team and industry partners. The author also extends his appreciation to the program managers of the National Aeronautics and Space Administration Electronics Parts and Packaging (NEPP) Program.

http://nepp.nasa.gov

Thank You!