Missile Defense Agency Copper Wire Bond Overview

To: 2018 NEPP Electronics Technology Workshop

Robert Varner
EEE Parts & Processes
Missile Defense Agency
June 18, 2018

DISTRIBUTION A
Approved for public release. Distribution is unlimited.
Bottom Line Up Front

• The Department of Defense is continuing to identify and assess the risks associated with using copper bond wire parts in defense systems.

• Screening processes should be in place to identify all use of plastic encapsulated microcircuits (PEM) with copper wire bonds in each system.

• Test and evaluation processes for PEMs must be updated to account for the differences between gold and copper bonding processes.

• Destructive Physical Analysis (DPA) is an effective method for detecting manufacturing process indicators and defects.
AEC-Q006 Appendix 1 Best Practices

• Inert environment around Cu wire
 - During wire storage
 - During free air ball formation
 - (Pd) Plated Cu wire

• Tighter controls/limits for wire pull/shear metrics
 - USL/UCL and LSL/LCL
 - Ball shear and wire pull near/over stitch
 - Production monitor using unmolded parts
 - Pull/shear after stress testing and careful decapsulation

• Capillary
 - More frequent replacement/maintenance
 - Designed specifically for Cu wire

• Thermosonic Bonding
 - Tighter parameters for frequency, temperature, force
 - Reliability data collection at bond recipe corners of Force and Frequency
Methods for Identifying Copper Wire Bond Parts

- Screening processes are necessary to properly identify manufacturer’s transition to copper wire bonds
 - Product change notifications
 - Assembly Material Change
 - Assembly Process Change
 - Manufacturing Location Change
 - Material declaration review
 - Most manufacturers call out the wire bond material
 - DPA
 - X-ray inspection
 - Experienced operators can distinguish the difference between Au and Cu wire bonds
Summary of Issues from PCNs

- PCN implementation dates
 - No PCN was issued if the part started as copper
 - Line delays and use of existing supplies

- Multiple Assembly Locations
 - Qualification
 - By Location
 - “Additional” assembly sets
 - Transition between gold and copper parts
 - Materials vary across assembly locations

- Retracted PCNs
 - Early identification
 - Continual monitoring
 - PCNs
 - Incoming devices
Copper Wire Identification Discrepancies

- Assembly site variations in bond wire
 - Four different assembly sites:
 - Two assembly sites only use gold bond wire
 - One assembly site uses only copper bond wire
 - One assembly site uses gold or copper bond wire
 ✓ Assembly site also has three options for wire size
- Different assembly sites can use different mold compounds, die attaches, bond wires, and die designs
 - Sometimes there are variations within the same facility
Qualification and Reliability Testing

• Reliability Monitor Data
 - Currently, most copper reliability data is a mix of copper and gold

• Qualification Data
 - PCN Qualification Data
 • Most readily available, but limited to one location
 - Typically done by package type, not to a specific part number
 • AEC-Q006, Rev. A qualification testing can be used
Methods to Limit the Impact of Copper Bond Wires

• Better Part Selection
 - Avoid Commercial (if possible)
 • Ask OCM (original component manufacturer) about gold options
 • “Old Gold”
 ✓ Known gold parts; date codes prior to copper implementation
 - Leveraging Automotive Options (AEC-Q006)
 - Military qualified standard parts
 - More expensive, requires less testing and screening
 - Defense Supply Center Columbus Vendor Item Drawings
 • V62 drawings are restricted to gold only

• Incoming Inspection
 - Mixed Reels
 • Review date codes & documentation
 - X-Ray
Vendor Identification Information

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Identification Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altera</td>
<td>Letter "C" at the end of the lot number</td>
</tr>
<tr>
<td>Atmel</td>
<td>Adds a "C" to the orderable part number to specify copper only on sample parts. Production parts have no physical indicator</td>
</tr>
<tr>
<td>Central Semiconductor</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>Cypress</td>
<td>"C" on device packaging</td>
</tr>
<tr>
<td>Diodes Inc.</td>
<td>Indicator is not always available and varies according to the site of manufacture (may be a dash over the date code). Review the PCNs for additional guidance</td>
</tr>
<tr>
<td>Exar</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>Freescale</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>IDT</td>
<td>"Y" suffix on lot number</td>
</tr>
<tr>
<td>International Rectifier</td>
<td>Underscore after lot code (XXXXP_)</td>
</tr>
<tr>
<td>Intersil</td>
<td>"M" site code = copper, "H" site code = gold</td>
</tr>
<tr>
<td>Lattice</td>
<td>Numeric value in the fifth position of the Lot/Date Code (XXXX#XXX)</td>
</tr>
<tr>
<td>Marvell</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>Micro</td>
<td>Letter "C" at the end of the date code. (YYWW C)</td>
</tr>
<tr>
<td>Microsemi</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>Microchip Technology</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>NXP</td>
<td>Site/Year/Month (SYM) part date code format changed to Site/Year/Week (SYWW)</td>
</tr>
<tr>
<td>On Semiconductor</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>Vishay</td>
<td>No external visual indicator</td>
</tr>
<tr>
<td>Xilinx</td>
<td>No external visual indicator</td>
</tr>
</tbody>
</table>
Conclusion

• The technical risks of using copper bond wires are still under evaluation and a concern for defense applications

• Copper bond wires are an emerging issue; updating requirements and assessing the risks should be a top priority industry wide

• Screening processes need to be in place to properly identify any use of copper wire bond devices

• DPA proved to be an expedient and statistically meaningful method for detecting/screening manufacturing process indicators, defects, and changes