

Radiation Testing of Advanced Non-Volatile Memories

Edward Wilcox ted.wilcox@nasa.gov NASA / Goddard Space Flight Center

Acronyms

- CMOS: Complementary Metal-Oxide Semiconductor
- COTS: Commercial Off The Shelf
- DRAM: Dynamic Random Access Memory
- ECC: Error-Correcting Code
- EDAC: Error Detection and Correction
- EEPROM: Electrically-Erasable Programmable Read-Only Memory
- FRAM: Ferroelectric RAM
- GEO: Geostationary Earth Orbit
- LET: Linear Energy Transfer
- MBU: Multiple Bit Upset
- MCU: Multiple Cell Upset
- MLC: Multi-level Cell
- MRAM: Magnetoresistive RAM
- NAND: Not AND (Flash Technology)
- NEPP: NASA Electronics and Packaging Program

- NVM: Non-Volatile Memory
- nvSRAM: Non-volatile SRAM
- QLC: Quad-level Cell
- RBER: Raw Bit Error Rate
- SBU: Single Bit Upset
- SEE: Single Event Effects
- SEFI: Single Event Functional Interruption
- SEU: Single Event Upset
- SLC: Single-level Cell
- SRAM: Static Random Access Memory
- SSD: Solid State Drive
- SSR: Solid State Recorded
- STT-MRAM: Spin-torque Transfer MRAM
- TID: Total Ionizing Dose
- TLC: Triple-level Cell
- UBER: Uncorrected Bit Error Rate

Outline

- Non-Volatile Memory Technologies
- Roadmap of Existing Efforts
- Recent Memory Testing Results
- Ongoing Testing
- Plans

NVM Technology

- Advanced Non-Volatile Memories
 - Includes memory technologies or products used for long- and intermediate-term storage of data in a non-volatile storage cell
 - It IS: NAND/NOR flash, MRAM, ReRAM, FRAM, PCM, etc used in
 - EEPROMs
 - nvSRAMs
 - Solid-State Recorders
 - Boot PROMs
 - Etc
 - Embedded NVM or DRAM-like NVM technologies are a collaborative effort with other NEPP tasks (scaled CMOS process evaluation, DDR memories)
 - Obvious Example: Intel 512GB Optane DIMM... pin-compatible with DDR4, but NVM

NVM Radiation Testing Roadmap

Our Memory Testing Approach

- Teensy 3.2 and 3.6 Arduinocompatible Microcontroller Boards
- <\$30
- Easy toolset & programming, yet lowlevel quasi-real-time access
- Up to 240 MHz CPU core with 120 MHz data bus
- 10Mbps USB link to PC
- Not appropriate for DRAM, highbandwidth, or timing-sensitive devices

Recent Results – Avalanche STTMRAM

- pMTJ STT-MRAM
- 55nm CMOS
- 4Mb-8Mb serial nvSRAM functionality

- Memory array cells are SEU hard:
 - None after 1.1x10⁷/cm² @ 85.4
 MeV-cm²/mg
 - None after 1x10⁷/cm² @ LET_{eff}
 120.8 MeV-cm²/mg (45°)
- Low SEFI threshold, but low cross-section (<2x10⁻⁶cm²)
 - No inadvertent writes noted
- >500 krad TID (including control circuitry)

Recent Results – 3D NAND Flash

- Planar NAND flash limited by CMOS scaling
 - Step back a few nodes but grow vertically (32 to 96 layers!)
- Extensive SEE testing of Micron 32-layer 3D NAND

- Early SSD test data on:
 - Intel, Micron 64-Layer
 - WD/SD/Toshiba 64-Layer
 - Samsung 64-Layer
 - more coming soon...

Recent Results -- 3D NAND Flash

- 3D memory structures require careful data analysis....
- When an SBU isn't an SBU \rightarrow single-ion tracks through 3D array:

Recent Results – 3D NAND Flash

 Manufacturers specify ECC based on normal "background" errors intrinsic to NAND flash (left)

Recent Results – 3D NAND Flash

- Of course, individual bit upsets are only part of the puzzle:
- CMOS control circuitry remains highly susceptible to large block/page errors that required a device reset (SEFI)

Ongoing Testing – 3D NAND Flash SSDs

- Easiest way to access wide variety of state-of-the-art COTS flash
- By far the hardest way to test it!
 - Abstraction, logical address mapping, EDAC, etc
 - Number of upsets expected from SEU *low* compared to memory size and built-in error rate
- Can we observe general trends from manufacturer-to-manufacturer in state-of-the-art 3D NAND flash?

Ongoing Testing – 3D NAND Flash SSDs

- First round of testing: Too few parts spread across too many MFG!
 - Low decapsulation yield on some parts led to unreliable operation
 - Very slow access time; must access entire memory space
- Results hard to generalize in a useful fashion:
 - Device might run to 1x10⁸cm⁻² without any "bad blocks" noted
 - Others: sudden emergence of large number of errors as ECC overwhelmed
- Second test: Irradiate large batch at different levels, then take time to carefully measure and post-process
 - Allow for thorough exercising of device post-irradiation
 - With enough parts, we can also look for SEFI this time
 - Not necessarily a "3D NAND" effect, but still the dominant error mode
- Hope to correlate block failure rate to "expected" block failure rate based on piece part data and knowledge of ECC implementation

Plans Moving Forward

• 3D NAND Flash

- Piece-part testing when able, particularly as projects begin to use them!
- COTS Solid-State Drive (SSD) testing for broad trends, manufacturer comparisons (more testing next week!)
- Non-Flash
 - Avalanche 40nm STT-MRAM SEE & TID testing ~Fall
 - Everspin MRAM testing collaborations with other NEPP tasks
 - 3D X-Point (Intel Optane) SEE (HI & Proton) testing
 - Identify emerging non-flash technologies & partnership opportunities