Radiation Testing of Advanced Non-Volatile Memories

Edward Wilcox
ted.wilcox@nasa.gov
NASA / Goddard Space Flight Center
Acronyms

- CMOS: Complementary Metal-Oxide Semiconductor
- COTS: Commercial Off The Shelf
- DRAM: Dynamic Random Access Memory
- ECC: Error-Correcting Code
- EDAC: Error Detection and Correction
- EEPROM: Electrically-Erasable Programmable Read-Only Memory
- FRAM: Ferroelectric RAM
- GEO: Geostationary Earth Orbit
- LET: Linear Energy Transfer
- MBU: Multiple Bit Upset
- MCU: Multiple Cell Upset
- MLC: Multi-level Cell
- MRAM: Magnetoresistive RAM
- NAND: Not AND (Flash Technology)
- NEPP: NASA Electronics and Packaging Program
- NVM: Non-Volatile Memory
- nvSRAM: Non-volatile SRAM
- QLC: Quad-level Cell
- RBER: Raw Bit Error Rate
- SBU: Single Bit Upset
- SEE: Single Event Effects
- SEFI: Single Event Functional Interruption
- SEU: Single Event Upset
- SLC: Single-level Cell
- SRAM: Static Random Access Memory
- SSD: Solid State Drive
- SSR: Solid State Recorded
- STT-MRAM: Spin-torque Transfer MRAM
- TID: Total Ionizing Dose
- TLC: Triple-level Cell
- UBER: Uncorrected Bit Error Rate
Outline

• Non-Volatile Memory Technologies
• Roadmap of Existing Efforts
• Recent Memory Testing Results
• Ongoing Testing
• Plans
NVM Technology

• Advanced Non-Volatile Memories
 – Includes memory technologies or products used for long- and intermediate-term storage of data in a non-volatile storage cell
 – It IS: NAND/NOR flash, MRAM, ReRAM, FRAM, PCM, etc used in
 • EEPROMs
 • nvSRAMs
 • Solid-State Recorders
 • Boot PROMs
 • Etc
 – Embedded NVM or DRAM-like NVM technologies are a collaborative effort with other NEPP tasks (scaled CMOS process evaluation, DDR memories)
 • Obvious Example: Intel 512GB Optane DIMM… pin-compatible with DDR4, but NVM
NVM Radiation Testing Roadmap

3D NAND Flash
- Micron
- Intel
- Samsung
- Hynix
- SanDisk/Toshiba

Discrete STT-MRAM
- Avalanche 55nm
- Avalanche 40nm

Mixed Categories
- 3D Xpoint (Intel Optane)
- Everspin MRAM DDR3
- Embedded MRAM

Radiation Testing

FY17 FY18 FY19 FY20
Our Memory Testing Approach

- Teensy 3.2 and 3.6 Arduino-compatible Microcontroller Boards
- < $30
- Easy toolset & programming, yet low-level quasi-real-time access
- Up to 240 MHz CPU core with 120 MHz data bus
- 10Mbps USB link to PC
- Not appropriate for DRAM, high-bandwidth, or timing-sensitive devices
Recent Results – Avalanche STTMRAM

- pMTJ STT-MRAM
- 55nm CMOS
- 4Mb-8Mb serial nvSRAM functionality

- Memory array cells are SEU hard:
 - None after $1.1 \times 10^7 / \text{cm}^2$ @ 85.4 MeV·cm2/mg
 - None after $1 \times 10^7 / \text{cm}^2$ @ LET$_{\text{eff}}$ 120.8 MeV·cm2/mg (45°)
- Low SEFI threshold, but low cross-section (<2x10$^{-6}$cm2)
 - No inadvertent writes noted
- >500 krad TID (including control circuitry)
Recent Results – 3D NAND Flash

- Planar NAND flash limited by CMOS scaling
 - Step back a few nodes but grow vertically (32 to 96 layers!)
- Extensive SEE testing of Micron 32-layer 3D NAND

- Early SSD test data on:
 - Intel, Micron 64-Layer
 - WD/SD/Toshiba 64-Layer
 - Samsung 64-Layer
 - more coming soon…

To be presented by Edward Wilcox at the 2018 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 18-21, 1, 2018.
Recent Results -- 3D NAND Flash

- 3D memory structures require careful data analysis....
- When an SBU isn’t an SBU → single-ion tracks through 3D array:

To be presented by Edward Wilcox at the 2018 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 18-21, 1, 2018.
Recent Results – 3D NAND Flash

- Manufacturers specify ECC based on normal “background” errors intrinsic to NAND flash (left)

Will ECC built for (left) fix SEUs (right)?
Recent Results – 3D NAND Flash

- Of course, individual bit upsets are only part of the puzzle:
- CMOS control circuitry remains highly susceptible to large block/page errors that required a device reset (SEFI)
Ongoing Testing – 3D NAND Flash SSDs

• Easiest way to access wide variety of state-of-the-art COTS flash
• By far the hardest way to test it!
 – Abstraction, logical address mapping, EDAC, etc
 – Number of upsets expected from SEU low compared to memory size and built-in error rate
• Can we observe general trends from manufacturer-to-manufacturer in state-of-the-art 3D NAND flash?
Ongoing Testing – 3D NAND Flash SSDs

• First round of testing: Too few parts spread across too many MFG!
 – Low decapsulation yield on some parts led to unreliable operation
 – Very slow access time; must access entire memory space

• Results hard to generalize in a useful fashion:
 – Device might run to $1 \times 10^8 \text{cm}^{-2}$ without any “bad blocks” noted
 – Others: sudden emergence of large number of errors as ECC overwhelmed

• Second test: Irradiate large batch at different levels, then take time to carefully measure and post-process
 – Allow for thorough exercising of device post-irradiation
 – With enough parts, we can also look for SEFI this time
 – Not necessarily a “3D NAND” effect, but still the dominant error mode

• Hope to correlate block failure rate to “expected” block failure rate based on piece part data and knowledge of ECC implementation
Plans Moving Forward

• 3D NAND Flash
 – Piece-part testing when able, particularly as projects begin to use them!
 – COTS Solid-State Drive (SSD) testing for broad trends, manufacturer comparisons (more testing next week!)

• Non-Flash
 – Avalanche 40nm STT-MRAM SEE & TID testing ~Fall
 – Everspin MRAM testing collaborations with other NEPP tasks
 – 3D X-Point (Intel Optane) SEE (HI & Proton) testing
 – Identify emerging non-flash technologies & partnership opportunities