GaN HEMT Power Applications: The road to space qualification

Leif Scheick
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Ca

Copyright 2018 California Institute of Technology. U.S. Government sponsorship acknowledged. This research was carried out in part by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration under the NASA Electronic Parts and Packaging Program (Code AE). Other data was collected from NASA flight projects.
Program scope

• Working group discusses best methods for evaluating new wide band gap technologies for infusion into space
 – GRC, JPL, JSC, GSFC, AFRL
 – Monthly meeting to share data and resources for radiation effects testing and reliability analyses
 – Analysis of current commercial efforts
• Previous efforts have been broad stroke testing
 – Mostly heavy ion testing
 – Dose effects secondary since GaN HEMT has no oxide
 – Survey of purchasable devices
• On going and future efforts
 – Continues radiation testing and analysis
 – Reliability test screens for new devices
 – Guidelines for implementation and testing
• All major providers have been tested so…
 – Deep dive on GaN Systems (E2V), Panasonic (Infineon), EPC (Freebird Semi)
 – Pivot to drill down on assurance approaches of “Big Three”
 – “Keep them honest” testing
Accomplishments to date

- Have tested four different manufactures
 - EPC (Gen 1 and 2), GaN Systems, Panasonic and Transphorm
- All have similar failure modes but with many small differences
 - Catastrophic SEE associate with drain edge of gate
- Dose effects are secondary since the device has not gate oxide
 - There are isolation oxides that may contribute
 - Hydrogen poisoning has been postulated to be a possible failure mode
- Book of knowledge draft is in review and should be released
- EPC Gen 5 devices are in testing this year
GaN Basics

- Current silicon power solutions are at their innate limits for space applications
 - Silicon devices are at efficiency limit
 - Best hi-rel devices are less then ~400 V drain-to-source

- GaN devices are becoming available
 - Reliability effects are a concern
 - Gate stress is limited
 - Thermal effects and aging are under study at GRC
Panasonic PGA26E19BA, Transporm THX320X, and EPC EPC2046 and EPC2045
SEE testing with GaN

- GaN devices are very thin (~10 nm) so TAM beamline at 15 MeV/u is fine
- Devices are lateral so angle is an issue
- Most devices have a dead layer of some soft
- Device are tested in static mode so far
Panasonic angle SEE dependence

- Angular response for SEE shows lot-to-lot variance
- All other variables the same
- No change in foundry
Effect of gate bias on SEE

- Previous testing show little effect of gate-to-source voltage on Vsee
- Later lots showed similar effect
- This is critical to power applications since negative VGS is used to turn devices off “hard” to meet lower leakages
EPC Gen 5 100 V test results

- EPC Gen 5 devices get leak and accrue damage well below V_{see}
- Maye damage to piezo-electric fields
- Fluence is always 10^7 cm$^{-2}$
EPC Gen 5 100 V No beam

- Dry run data with no beam shows no increased leakage

![Graph showing dry run data with no beam for EPC Gen 5 at VDS = 100 V](image_url)
EPC Gen 5 200 V test results

- EPC Gen 5 devices get leak and accrue damage well below Vsee
- Maybe damage to piezo-electric fields
- Fluence is always 10^7 cm^{-2}
EPC Gen 5 200 V test results

- EPC Gen 5 devices get leak and accrue damage well below V_{see}
- Maye damage to piezoelectric fields
- Fluence is always 10^7 cm$^{-2}$
EPC Gen 5 200 V No beam

- Dry run data with no beam shows no increased leakage
EPC Ge5 200 V parts blown open

- Usual failure mode is high current failure
- This device blew open
- Under FA analysis currently

2121 EPC2046 Ag@42.2 MeV.cm²/mg
VDS = 100 V
Cross section of Vsee

- Cross section is routinely \(~2\times10^{-6}\) cm\(^2\)
- This is approximately the area of the drain edge of the gate
Vsee dependence on LET

- Two hundred volt rated parts are more sensitive to SEE
- Similar behavior to Gen 1 and Gen 2
COMMERCIAL QUALIFICATION EFFORTS
Reviewing the “Big Three”

- Three entities have emerged to sate the appetite for GaN power system applications
 - GaN Systems with E2V, Panasonic with Infineon, EPC with Freebird Semiconductor
- All three rushing to “fill the gaps” on qualification – radiation, reliability and packaging
- EEE part qualification is almost exclusively based on silicon “lessons learned”
 - MIL-PRF-19500, MIL-PRF-38584, MIL-PRF-38535
- Using these as a basis of GaN qualification overlooks possible escapes
 - E.g.: Current collapse, dynamic RDSon, channel hot carrier stress, inverse piezoelectric effect, electromigration
GaN devices are still widely varied

<table>
<thead>
<tr>
<th>Aspect*</th>
<th>Panasonic X-GaN</th>
<th>Infineon SJ-MOS IPL60R065C7</th>
<th>Transphorm TPH3212PS</th>
<th>GaN System GS66508P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Normally Off GIT</td>
<td>MOS</td>
<td>Cascode</td>
<td>Normally Off Insulated Gate</td>
</tr>
<tr>
<td>Package</td>
<td>SMD DFN 8x8</td>
<td>SMD DFN 8x8</td>
<td>TO-220</td>
<td>SMD GaNPX 10x8.7</td>
</tr>
<tr>
<td>BVDS</td>
<td>600V</td>
<td>650V</td>
<td>650V</td>
<td>650V</td>
</tr>
<tr>
<td>IDSS (150°C)</td>
<td>1uA (100uA)</td>
<td>1uA (10uA)</td>
<td>3uA (12uA)</td>
<td>2u (400uA)</td>
</tr>
<tr>
<td>Ron (150°C)</td>
<td>56mΩ (110mΩ)</td>
<td>56mΩ (125mΩ)</td>
<td>72mΩ (148mΩ)</td>
<td>50mΩ (129mΩ)</td>
</tr>
<tr>
<td>Vth</td>
<td>1.2V</td>
<td>3.5V</td>
<td>2.1V</td>
<td>1.7V</td>
</tr>
<tr>
<td>Qg</td>
<td>5nC</td>
<td>68nC</td>
<td>14.6nC</td>
<td>5.8nC</td>
</tr>
<tr>
<td>Ciss</td>
<td>405pF</td>
<td>2850pF</td>
<td>1130pF</td>
<td>260pF</td>
</tr>
<tr>
<td>Co(er)</td>
<td>87pF</td>
<td>101pF</td>
<td>142pF</td>
<td>88pF</td>
</tr>
<tr>
<td>Qrr diode</td>
<td>0C</td>
<td>6uC</td>
<td>90nC</td>
<td>0C</td>
</tr>
<tr>
<td>Qoss</td>
<td>45nC</td>
<td>-</td>
<td>-</td>
<td>57nC</td>
</tr>
</tbody>
</table>

Large variation in some parameter mean reliability data will be as varied

source Panasonic
MIL-STD-19500 is extensive

- The initial urge is to use 19500 as the standard for qualification
 - MIL-STD-883 is also used
- Followed by MIL-STD-750 TM1019 and 1080 for radiation
- Proper qualification needs to identify the gaps

To be presented at the 9th NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop June 20, 2018, NASA GSFC, Greenbelt, MD.
Qualification efforts vary widely between vendors

“Secret sauce” requires NDAs to reveal process

Concern is fixing one issue (e.g., current collapse) will result in a new failure mode!
NASA QUALIFICATION GUIDELINE
Radiation qualification

• What we know so far
 – SEE risk associated with the drain edge of the gate in higher bias
 – Total dose risk is minimal

• What we need to know to have an efficient testing campaign
 – What temperature is worst case for SEE testing?
 – What are the latent damage effects of ion testing?
 – What is the best approach for PIGS and PIDS testing?
 – What is the effect of burn-in on the testing?
 – Is there a synergistic effect between dose and SEE?
 – What is the worst case ion condition for SEE testing?
 – Does gate stress exacerbate dose or ion effects?
 – What is worst case – static or dynamic?
 – What is the effect of dynamic RDSon on dose or SEE effects?
 – Are there any device specifications that could indicate radiation effects?

• Until these trends are analytically known
 – Test early and test often
Case in point – three difference manufactures

In contrast, silicon power MOSFETs almost all look the same
Future work

• More testing
 – Panasonic parts
 – Transphorm
 – EPC Gen 5

• Testing guideline
 – Modeling data is the best bet

• Leverage off flight projects
 – Power design engineers can’t take there eyes off of the efficiency number